
 
 

 

 

A 60 kg (fat) child runs at 4 m/s towards a 

circular plate that is initially spinning in the 

direction indicated in the diagram. What is 

the angular speed when the child is on the 

plate? 

 
 

user.physics.unc.edu/~rowan/p24site/p24units/unit11/WCHAP11-7.html 
 

 

 
www.lat34.com/2013/06/24/2013-x-games-real-street-semi-finals/ 

 

Discover the answer to this question in this chapter.  
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Rotation of objects will now be considered. From now on, an object can have two motions: 

a motion in a straight line (call translation or linear motion) and a rotating motion. For 

example, a ball rolling on an incline have both types of motions simultaneously. 

 

In this chapter, rotation around a fixed axis (i.e. whose orientation does not change) will 

be considered most of the time. This, therefore, excludes the description of the motion of 

a spinning top, which turns on itself while the orientation of the axis of rotation changes. 

 

 

 

Angular Position, Velocity and Acceleration 
 

To describe the motion of a rotating object, the orientation of the object must be known. 

This orientation can be given with an angle. 

 

Suppose that there is a mark on the object (X on the 

diagram). The orientation of the object can be 

described by specifying the angle between the 

direction this mark and a reference angle θ = 0. This 

angle will be given in radians here. The positive 

direction for the angle is arbitrary and must be chosen 

each time. 

 

The angular displacement corresponds to the change in orientation of the object. 

 

Angular Displacement 

 

2 1θ θ θ∆ = −  

 

Angular velocity is used to determine if an object spins more or less quickly. If the object 

spins quickly, the angle changes quickly and if the object spins slowly, the angle changes 

slowly. This suggests that the angular velocity corresponds to the rate of change of the 

angle. 

 

Average Angular Velocity 

t

θ
ω

∆
=

∆
 

 

Instantaneous Angular Velocity 

d

dt

θ
ω =  

These speeds are in rad/s. 

 

Angular speed is the absolute value of angular velocity. 
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In this chapter, only the rotation of rigid objects will be described. Rigid objects are solid 

objects that do not deform so that the angular velocity is the same for each atom of the 

object. A juice container is not a rigid object since it is possible to turn the container without 

turning the juice inside it. As the angular velocity of the juice is not the same as the angular 

velocity of the container then, it is not a rigid object. Note that at the beginning of this 

chapter, objects will also not change shape as they rotate. 

 

The angular velocity is related to the period if the angular velocity is constant. Remember 

that the period (T) is the time it takes for the object to make one complete revolution. One 

revolution (2π rad) during the period of rotation (T) gives the following angular velocity.  

 

Relationship between Angular Velocity and Period (if ωωωω is Constant) 
 

2

T

π
ω =  

 

However, the angular velocity can change. If a spinning wheel slows down, then its angular 

velocity decreases. To describe this change in angular velocity, the rate of change of 

angular velocity is used. This rate is the angular acceleration. 

 

Average Angular Acceleration 

t

ω
α

∆
=

∆
 

 

Instantaneous Angular Acceleration 

d

dt

ω
α =  

These accelerations are in rad/s² 

 

Formally, angular velocity and angular acceleration are vectors. With a fixed axis, it is not 

really necessary to consider them as vectors. Only the sign (depending on our chosen 

positive direction) is sufficient in this case. 

 

 

Equations of Rotational Kinematics for Constant Angular 
Acceleration 
 

If the angular acceleration is a constant, the definitions given above can be integrated to 

obtain the equations of rotational kinematics. 

 

The results of these integrations are 
 

0

d
t

dt

ω
α ω ω α= → = +  

 

and 
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2

0 0

1

2

d
t t

dt

θ
ω θ θ ω α= → = + +  

 

This was done rather quickly, but these are similar to the calculations made in the first 

chapter to get the equations of kinematics for linear motion. As in Chapter 1, these two 

equations can also be combined to form two other equations. The four following equations 

are thus obtained. 

 

Rotational Kinematics Equations for Constant Angular Acceleration 
 

( )

( )

2

0

2 2

0 0

0 0

1

2

2

1

2

o

o

t

t t

t

ω ω α

θ θ ω α

α θ θ ω ω

θ θ ω ω

= +

= + +

− = −

= + +

 

 

As in linear kinematics, one of these four equations will, most of the time, solve the 

problem directly. 

 

Example 12.1.1 

The pulley in this diagram, initially at rest, begins to rotate in the 

positive direction with a constant angular acceleration of 3 rad/s². 

 

a) What is the angular velocity 2 seconds later? 

 

The velocity is 
 

0

²
0 3 2

6

rad
s

rad
s

t

s

ω ω α= +

= + ⋅

=

 

www.chegg.com/homework-help/questions-

and-answers/physics-archive-2012-october-19 

 

b) What is the number of revolutions made by the pulley in 10 seconds? 

 

To find the number of revolutions made, the angular displacement must be found. 

If the initial position is the origin (�0 = 0), the final angle is, therefore, the angular 

displacement. This angle is 
 

( )

2

0 0

2

²

1

2

1
0 0 3 10

2

150

rad
s

t t

s

rad

θ θ ω α= + +

= + + ⋅ ⋅

=
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Therefore, the pulley has rotated 150 rad. As one revolution is made for each 

rotation of 2π rad, the number of revolutions is 

 

150

2

23.87

rad
N

radπ
=

=

 

 

 

The Distance Travelled, the Speed and the Acceleration at a 
Certain Place on the Rotating Object 
 

 

At a certain distance from the axis on a rotating plate, 

a certain distance is travelled as the object rotates (∆s 

in the diagram). There is, of course, a link between 

the distance travelled (∆s) and the angular 

displacement of the object (∆θ). Actually, this link 

comes from the definition of the angle in radians. 

 

The definition of angle (in radians) is 
 

s

r
θ

∆
∆ =  

 

Therefore, 

 

Distance Travelled at a Distance r from the Axis if the Angular Displacement is ∆∆∆∆θθθθ 

  
s r θ∆ = ∆  

 
 

The speed of an object staying at distance r from the axis can now be found. If the previous 

equation is divided by the time, the average speed is obtained. 
 

s r

t t

θ∆ ∆
=

∆ ∆
 

 

If this time now tends to zero, the equation becomes  
 

ds rd

dt dt

ds d
r

dt dt

θ

θ

=

=

 

 

The last line comes from the fact that we are looking for the speed of an object staying at 

the same distance from the axis, which means that r is constant and can be taken outside 
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the derivative. As the remaining derivatives are the speed and the angular speed, the 

equation becomes 
 

Speed at a Distance r From the Axis 

  
v rω=  

 

Thus, the farther an object is from the axis of rotation, the faster it goes. This is what can 

be seen in this video. 

http://www.youtube.com/watch?v=atzsv63a1FE 

Forget Maurice’s sexist comments and focus on the figure skaters. The skaters must skate 

faster the further away they are from the axis of rotation. This is because the speed (v) 

increases as the distance from the axis of rotation increases if the angular velocity (ω) is 

constant. In the clip, the angular speed is constant since each skater makes the same angle 

during the same time in order to keep the line of skaters straight. 

 

Finally, the acceleration at a distance r from the axis can be found if the speed equation is 

derived. 
 

( )

v r

d rdv

dt dt

dv d
r

dt dt

a r

ω

ω

ω

α

=

=

=

=

 

 

As this speed is the tangential speed (the object always 

remains at the same distance r from the axis), the 

acceleration obtained is actually the tangential 

acceleration (at). In the diagram, this acceleration is 

shown as being in the same direction as the rotation (the 

speed would increase then). It could also have been 

directed in the opposite direction to the rotation (the 

speed would decrease then). 

 

But be careful: a centripetal acceleration (ac) is also 

present. Therefore, the acceleration is 

 

Magnitude of the Acceleration at a Distance r from the Axis 

  

Tangential Acceleration 
T

a rα=  

Centripetal Acceleration   
2

2

c

v
a r

r
ω= =  

Acceleration   2 2

t c
a a a= +  
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Example 12.1.2 

 

A bug is 30 cm from the axis of rotation of 

a rotating disk having a diameter of 1 m. 

The initial angular velocity is 5 rad/s, and it 

increases at the rate of 12 rad/s². 

 

 

 

a) What is the speed of the bug at this time? 

 

The speed is 
 

0.3 5

1.5

rad
s

m
s

v r

m

ω=

= ⋅

=

 

 
b) What is the magnitude of the acceleration at this time? 

 

The magnitude of the acceleration is 
 

2 2

t c
a a a= +  

 

The tangential and centripetal accelerations must be found first. 

 

The tangential acceleration is 
 

2

2

0.3 12

3.6

t

rad

s

m

s

a r

m

α=

= ⋅

=

 

 

The centripetal acceleration is 
 

( )

2

2

²

0.3 5

7.5

c

rad
s

m
s

a r

m

ω=

= ⋅

=

 

 

Therefore, the magnitude of the acceleration is 
 

( ) ( )

2 2

2 2

² ²

²

3.6 7.5

8.32

t c

m m
s s

m
s

a a a= +

= +

=
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Rolling without Slipping Conditions 
 

If a sphere or a cylinder rolls without slipping on the ground, the rotation must be done at 

a very precise rate. There is then a link between the speed of the centre of mass and the 

angular velocity because the object has to spin more quickly if the speed increases. This is 

common sense: If the speed of a car increases, the wheels must spin faster. 

 

To find the link between the two, imagine that a wheel 

makes on revolution during time T. As it makes on 

revolution, it travels a distance equal to the circumference 

of the wheel. The speed is, therefore, 
 

2
cm

R
v

T

π
=  

 

As the wheel makes one revolution during the same time, the angular speed is 
 

2

T

π
ω =  

 

Comparing these two equations, the link between speed and angular velocity is easily 

found. 

 

Link Between Speed and Angular Velocity if There Is Rolling Without Slipping 

  

cm
v Rω=  

 

If this equation is derived with respect to time, the connection between acceleration and 

angular acceleration is found. 

 

Link Between Acceleration and Angular Acceleration if There Is Rolling Without 

Slipping 

cm
a Rα=  

 

 

Example 12.1.3 

A car travels at 90 km/h. How many revolutions per 

minute do the wheels make if they have a diameter of 

60 cm? 

 

The speed of the centre of mass of the wheel is the 

same as the speed of the car. Thus, the angular 

velocity of the wheel is 

 
College physics, openstax 
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25

0.3

83.33

cm

m
s

rad
s

v

R

m

ω =

=

=

 

 

Therefore, the number of revolutions per second is 
 

83.33
13.26

2

rad
s revolution

srad
revolution

π
=  

 

In one minute, the number of revolutions is 
 

13.26 60 795.8revolutions s revolutions
s min min

⋅ =  

 

The velocity at different points on the wheel can now be found. This velocity is the result 

of the addition of two velocities: the linear velocity, which is the same everywhere, and the 

rotational velocity, which increases with the distance from the axis. On the edge of the 

wheel, the rotation speed is equal to the speed of the centre of mass if there is no slipping, 

because 

cm
cm

v
v r R v

R
ω= = =  

 

The following velocities must then be added to obtain the resulting velocity. 

 
www.chegg.com/homework-help/questions-and-answers/figure-magnitude-force-

applied-horizontally-axle-wheel-necessary-raise-wheel-obstacle-heig-q3191870 

 

 

The result of this addition is shown in the diagram to the 

left. The top of the wheel goes at 2vcm, and the bottom of 

the wheel is at rest. It is quite normal for the lower part 

of the wheel to have no speed since it does not slip. If the 

ground has no speed, the bottom of the wheel must have 

the same speed if the wheel does not slip. 
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This means that if a car moves at 100 km/h, the top of the wheels moves at 200 km/h. 

 

 

It also means that when a large block of 

stone rolling on logs is pushed, the block, in 

contact with the top of the logs, is moving 

twice as fast as the logs (see diagram). 

 

 

 

 

Rope on a Pulley Conditions 
 

When a rope passes through a pulley without slipping, 

the speed of the rope must be the same as the speed of 

the pulley at the place where the rope passes through the 

pulley. 

 
This means that if the rope passes through the pulley at a 

distance r from the axis of rotation, the speed of the 

pulley at that distance from the axis must be equal to the 

speed of the rope. This implies that 
 

rope pulley

rope

v v

v rω

=

=
 

 

If this equation is derived with respect to time, the accelerations are obtained. 
 

rope
a rα=  

 

Therefore, the conditions are as follows. 

 

Link Between Speeds and Accelerations for a Rope Passing Through a Pulley Without 

Slipping 

  

rope

rope

v r

a r

ω

α

=

=
 

 

where r is the distance between the rope and the axis of rotation 
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Example 12.1.4 

In the situation shown in the diagram, what is the speed 

of block B if the strings do not slip on the pulley? 

 

 

The string on the left has the same speed as block 

A. As the rope passes through the pulley 100 mm 

from the axis, the speed of the pulley 100 mm 

from the axis must be 6 m/s. Therefore, the 

angular speed of the pulley is 
 

1

6 0.1

60

rope

m
s

rad
s

v r

m

ω

ω

ω

=

= ⋅

=

 

 

The rope on the right has the same speed as block B. As the rope passes through the 

pulley 30 mm from the axis, the speed of the pulley 30 mm from the axis must be equal 

to the speed of block B. This speed is 
 

2

60 0.03

1.8

rope

rad
B s

m
B s

v r

v m

v

ω=

= ⋅

=

 

 

 

 

Transmission of Rotational Motion 
 

If two wheels are in contact and there is no 

slippage between the two, there is a link 

between the angular speeds of the wheels. As 

the wheels touch without slipping, the speed of 

the wheels must be the same at the point of 

contact. This means that 
 

1 2v v=  

 

As the speed is ωR, this becomes 

 

Rotational Motion Transmission 

 

1 1 2 2R Rω ω=  
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This relationship remains valid even if the 

wheels are not in contact, but are instead 

connected by a belt or a chain. In this case, 

R represents the distance from the axis of 

rotation to the place where the strap or chain 

is in contact with the wheel. 

 

 

Example 12.1.5 

Pulley A, whose radius is 15 cm, spins with an 

angular velocity of 10 rad/s. Pulley B has a radius 

of 10 cm, pulley B′, which is welded to pulley B, 

has a radius of 5 cm, and pulley C has a radius of 

25 cm. What is the angular velocity of the 

pulley C? 

 

 

The angular velocity of pulley B must be 

found first. Its angular velocity is 
 

10 0.15 0.1

15

A A B B

rad
Bs

rad
B s

R R

m m

ω ω

ω

ω

=

⋅ = ⋅

=

 

 

Pulley B′ spins with the same angular velocity as it is welded to pulley B. Then, the 

angular speed of pulley C is found with 

 

' '

15 0.05 0.25

3

B B C C

rad
Cs

rad
C s

R R

m m

ω ω

ω

ω

=

⋅ = ⋅

=

 

 

 

 

Object Spinning Around a Stationary Centre of Mass 
 

The total kinetic energy is calculated by summing the kinetic energy of each little mass 

composing the object.  
 

21

2
k i i

E m v=  
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As the speed at a distance r from the axis of rotation is 

v rω= , the energy is 
 

( )
21

2
k i i

E m rω=  

 

As the angular velocity is the same for all the small masses, 

it is a constant that can be taken out of the sum. Then, the 

energy becomes 
 

( )

( )

2

2 2

1

2

1

2

k i i

i i

E m r

m r

ω

ω

=

=




 

 

The quantity in parentheses is a quantity that comes up often in rotation. It is called the 

moment of inertia (name given by Euler in 1758). 

 

Moment of Inertia of an Object 

 
2

i i
I m r=  

 

In this equation, r is the distance between the small mass and the axis of rotation (which is 

at the centre of mass here). The units for the moment of inertia are kg m². 

 

Later, it will be shown that the moment of inertia indicates whether an object is hard to set 

into rotation. The higher the moment of inertia is, the harder it is to set the object into 

rotation. It is the rotational equivalent of mass, which measures the inertia for linear 

motion. However, in rotation, inertia depends not only on the mass but also on the shape 

of the object. 

 

The term “moment” may intrigue you. It is not used here in the sense of “instant” but rather 

in its mathematical sense. A moment is a quantity multiplied by a distance to a certain 

power. If the power is two, as is the case here with r², it is an order 2 moment. Note that 

the centre of mass of an object is a moment of order 1. This terminology will be present 

everywhere in this chapter. 

 

In the moment of inertia calculation, the distance between the small mass and the axis of 

rotation is used. Here, as the axis is at the centre of mass, the moment of inertia is calculated 

using the distances between each small mass and the centre of mass. To indicate that the 

moment of inertia is calculated here using the distances from the centre of mass, the 

moment of inertia is denoted Icm. 

 

Using the formula for the moment of inertia, the kinetic energy 
 

( )2 21

2
k i i

E m r ω=   
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then becomes 
 

Kinetic Energy of an Object Rotating Around a Stationary Axis Passing Through the 

Centre of Mass 

21

2
k cm

E I ω=  

 

Example 12.2.1 
 

The object shown in the diagram spins at the 

rate of 1 revolution per second. What is its 

kinetic energy? (The mass of the rod is 

neglected and the 20 kg masses are 

considered to be point masses.) 

 

To calculate the kinetic energy, the moment of inertia of the object must be known 

first. As each 20 kg mass is 50 cm from the axis, we have 
 

( ) ( )

2

2 2

1 1 2 2

2 2
20 0.5 20 0.5

10 ²

cm i iI m r

m r m r

kg m kg m

kgm

=

= +

= ⋅ + ⋅

=



 

 

Therefore, the kinetic energy of rotation is 
 

( )

2

22

1

2

1
10 2

2

197.4

k cm

rad
s

E I

kgm

J

ω

π

=

= ⋅ ⋅

=

 

 

If the speed of each mass had been found, the kinetic energy could have been 

calculated by summing the ½mv² of each mass. The answer would have been the same 

then.  
 

Note that an object spinning in the air or in space must spin around its centre of mass. 

 

 

Object Spinning Around a Stationary Axis Not at the Centre 

of Mass of the Object 
 

 Kinetic Energy Formula 

 

The total kinetic energy is calculated by summing the kinetic energy of each little mass 

composing the object.  
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21

2
k i i

E m v=  

 

As the speed at a distance r from the axis of rotation is 

v rω= , the energy is 
 

( )

( )

2

2 2

1

2

1

2

k i i

i i

E m r

m r

ω

ω

=

=




 

 

In this formula, the famous sum of the mass times the distance squared is found. This sum 

is the moment of inertia 
 

2

i i
I m r=  

 

So the kinetic energy is 

 

Kinetic Energy of an Object Rotating Around an Axis Not Passing Through the 

Centre of Mass 
 

21

2
k

E Iω=  

 

Moment of Inertia With an Axis Not Passing Through the Centre of Mass 

 

The moment of inertia is this last calculation is different as the distances are not measured 

from the axis at the centre of mass, as was the case with Icm. Instead, they are measured 

from an axis located somewhere else. This changes all the distances and thus completely 

changes the result of the sum. Therefore, the value of I of an object depends on the position 

of the axis of rotation. 

 

Fortunately, it is possible to know the moment of inertia with 

any axis if Icm is known. Since the position of a small mass is  

 

i i relr d r= +
�

� �

 

 

(rrel is the position of each mass measured relative to the centre 

of mass.) 

 

The moment of inertia is then 
 

( )

( )

2

2 2

2 2

2

2

i i rel

i i rel i rel cm

i i rel i i rel i

I m r d

m r r d d

m r m r d m d

= +

= + ⋅ +

= + ⋅ +





  

�
�

�
�

�
�

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 16 

 

( ) ( )

( )

2 2

2 2

2

2

i i rel i i rel i

i i rel i i rel

m r m r d m d

m r m r d md

= + ⋅ +

= + ⋅ +

  

 

�
�

�
�

 

 

The second term vanishes since 
 

1
i i rel cm relm r r

m
=

� �

 

 

is the position of the centre of mass relative to the centre of mass. It is obvious that the 

distance between the centre of mass and the centre of mass is zero! Therefore,  rcm rel = 0 

and the term vanishes. The moment of inertia then becomes 
 

2 2

i i relI m r md= +  

 

The first term is the moment of inertia when the axis is at the centre of mass (Icm) since all 

the rrel are the distances measured from the centre of mass. The moment of inertia is thus 

 

I From Icm (Parallel Axes Theorem) 
 

2

cm
I I md= +

 
 

Let us remind you that, in this formula, d is the distance between the axis of rotation and 

the center of mass. 

 

Note that these two axes (the one passing through the centre of mass and the one not passing 

through the centre of mass) must be parallel for this formula to be true. 

 

Example 12.2.2 
 

The object shown in the diagram spins at a 

rate of 1 revolution per second. What is its 

kinetic energy? (The mass of the rod is 

neglected and the 20 kg masses are 

considered to be point masses.) 

 

 

To calculate the kinetic energy, the moment of inertia of the object must be known 

first. There are two ways to calculate this moment. The first is 
 

( ) ( )

2

2 2

1 1 2 2

2 2
20 0 20 1

20 ²

i iI m r

m r m r

kg m kg m

kgm

=

= +

= ⋅ + ⋅

=


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The second is 
 

( )

2

2
10 ² 40 0.5

20 ²

cmI I md

kgm kg m

kgm

= +

= + ⋅

=

 

 

The value of Icm found in example 12.2.1 was used. As the centre of mass of this object 

is equidistant from the two balls, the distance between the centre of mass and the axis 

is d = 0.5 m. 

 

Therefore, the kinetic energy is 
 

( )

2

2

1

2

1
20 ² 2

2

394.8

k

rad
s

E I

kgm

J

ω

π

=

= ⋅ ⋅

=

 

 

 

Object Moving and Spinning Around its Centre of Mass 
 

An object can have a linear motion while spinning around its centre of mass. This is the 

case for the wheels of a car or for a projectile turning on itself during its flight. Then the 

kinetic energy can be calculated with (formula at the end of the previous chapter) 
 

2 21 1

2 2
k cm i i rel

E mv m v= +  

 

The velocity vrel is the difference in speed between the centre of mass and the small mass. 
 

rel cm
v v v= −
� � �

 

 

Since the speed of the centre of mass is subtracted, the effect of the linear motion is 

eliminated. This means that only the rotational speed must be considered in the calculation 

of vrel. Therefore,  vrel = ωr, and the kinetic energy is 
 

( )

( )

2 2

2
2

2 2 2

1 1

2 2

1 1

2 2

1 1

2 2

k cm i i rel

cm i i rel

cm i i rel

E mv m v

mv m r

mv m r

ω

ω

= +

= +

= +







 

 

Since the term in parentheses is the moment of inertia calculated from the centre of mass, 

the energy becomes 

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 18 

 

Kinetic Energy of an Object Making Both Linear and Rotational Motion 

 

2 2

Translation Rotation 

1 1

2 2

k k

k cm cm

E E

E mv I ω= +
��� �����

 

 

Therefore, the energy is a simple sum of the kinetic energies of translation and rotation. 

 

Example 12.2.3 

What is the kinetic energy of this object moving at 5 m/s 

and spinning at the rate of 1 revolution/s? 

 

The kinetic energy is 
 

2 21 1

2 2
k cm cm

E mv I ω= +  

 

Since we already know that the moment of inertia of this object is 10 kgm² (example 

12.2.1), the energy is 
 

( ) ( )

2 2

2 2

1 1

2 2

1 1
40 5 10 ² 2

2 2

500 197.4

697.4

k cm cm

m rad
s s

E mv I

kg kgm

J J

J

ω

π

= +

= ⋅ ⋅ + ⋅ ⋅

= +

=

 

 

 

 

The moment of inertia of a system is 
 

2

i i
I m r=  

 

When there are only a few masses that make up the system, as in the previous examples 

where there were only two masses, it is not very long to calculate the moment of inertia. 

However, it can become quite long if the moment of inertia of a sphere, for example, is 

needed. Then, the sum must be done over all the atoms forming the sphere… 

 

Fortunately, the calculation of the moment of inertia can also be done with calculus. The 

object is divided into small infinitesimal masses, and the sum is done with the following 

integral.  
 

2 2

0
lim i i
m

r m r dm
→

=   
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However, the calculation of the moment of inertia with this integral remains quite complex 

most of the time. For a two-dimensional object, two double integrals must be calculated 

while three triple integrals must be calculated for three-dimensional objects. As you have 

never calculated double or triple integrals of this kind, this type of calculation will not be 

done here. However, the calculation can be done quite easily for a one-dimensional object 

such as a rod. 

 

To calculate the moment of inertia, the rod is divided into small pieces of infinitesimal 

length. The moment of inertia is then 
 

2I x dm=   

 

Each piece has a length dx and a mass dm and x is the distance between the small mass and 

the axis of rotation. 

 
The linear density of the small piece is 
 

mass dm

length dx
λ = =  

 

Therefore, the mass of the small piece is 
 

dm dxλ=  
 

Thus, the moment of inertia is given by 
 

2I x dxλ=   

 

This formula can now be used to calculate the moment of inertia of a uniform rod 

(λ = constant) when the axis passes through the centre of mass. The following diagram 

represents this rod. 

 
 

The moment of inertia is 
 

2
2

2

3 2

2

3

L

cm

L

L

L

I x dx

x

λ

λ

−

−

=

 
=  

 


 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 20 

 

3 3

3

24 24

12

L L

L

λ

λ

 −
= − 

 

=
 

 

As the linear density of the rod is 
 

m

L
λ =  

 

the moment of inertia is 
 

3

2

12

1

12

cm

m L
I

L

mL

=

=

 

 

By doing similar calculations, but in three dimensions, the moment of inertia of multiple 

objects can be found. Here are the results for 4 common shapes. 

 

Moment of Inertia of 4 Common Uniform Objects 

 

 
 

Many other moments of inertia have been calculated. A more thorough list can be found 

on this site. 

http://www.livephysics.com/tables-of-physical-data/mechanical/moment-of-inertia.html 
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Example 12.3.1 

What is the moment of inertia of this sphere? 

 

With a sphere and an axis of rotation passing 

through the centre of mass, moment of inertia 

is 
 

( )

22
5

22
5

2

5 0.2

0.08

cm
I mR

kg m

kgm

=

= ⋅ ⋅

=

 

 

 

Example 12.3.2 

What is the moment of inertia of this sphere? 

 

This time, the axis does not pass through the 

centre of mass of the sphere. The moment of 

inertia is therefore 
 

2

cm
I I md= +  

 

The first term (Icm) is the moment of inertia 

of a sphere when the axis passes through the 

centre of mass. This moment of inertia is 
 

22
5cm

I mR=  

 

In the second term, d is the distance from the axis of rotation to the centre of mass of 

the sphere. Here, this distance is 20 cm. The moment if inertia is thus 
 

( ) ( )

2 22
5

2 22
5

2

5 0.2 5 0.2

0.28

I mR md

kg m kg m

kgm

= +

= ⋅ ⋅ + ⋅

=
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Example 12.3.3 
 

What is the moment of inertia of the 

object shown in the diagram? The mass of 

the rod is 1.2 kg, and radius of the spheres 

is 5 cm. (This time, we do not neglect the 

mass of the rod and do not consider that 

the two 20 kg spheres are point masses.) 

 

This object consists of a rod and two spheres. 

 

The moment of inertia of the rod (which rotates around its centre of mass) is 
 

( )

2

1

2

2

1

12

1
1.2 0.9

12

0.081

I mL

kg m

kgm

=

= ⋅ ⋅

=

 

 

The moment of inertia of the sphere on the right (which does not rotate around its 

centre of mass) is 
 

( ) ( )

2 2

2

2 2

2

2

5

2
20 0.05 20 0.50

5

5.02

I mR md

kg m kg m

kgm

= +

= ⋅ ⋅ + ⋅

=

 

 

The moment of inertia of the sphere on the left (which does not rotate around its centre 

of mass) is identical to the moment of inertia of the sphere on the right. 
 

2

3 5.02I kgm=  
 

Therefore, the total moment of inertia is 
 

1 2 3

2 2 20.081 5.02 5.02

10.121 ²

I I I I

kgm kgm kgm

kgm

= + +

= + +

=

 

 

 

 

The law of conservation of mechanical energy will now be applied to rotating objects. One 

of the critical steps now consists of choosing the correct kinetic energy formula that applies 

to the situation. 
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Example 12.4.1 

 

A 2 m rod is held in a horizontal position. At one end of the 6 kg rod, there is a pivot. The 

rod is then released. What will the speed of the other end of the rod be when the rod is in a 

vertical position? 
 

 
 

Mechanical Energy Formula 

 

As there is only one object, the mechanical energy is 
 

mec k
E E mgy= +  

 

With rotation, the kinetic energy is not simply ½mv². This is an object rotating around 

a stationary axis not passing through the centre of mass. Therefore, the kinetic energy 

is 

21

2
k

E Iω=  

 

The moment of inertia is the moment of inertia of a rod with the axis at the end. This 

moment can be found with the parallel axes theorem. 
 

( ) ( )

2

2 2

2 2

1

12

1
6 2 6 1

12

8 ²

cm
I I md

mL md

kg m kg m

kgm

= +

= +

= ⋅ ⋅ + ⋅

=

 

 

d is equal to 1 m since the centre of mass is in the midpoint of the rod and the axis of 

rotation is at the end of the rod. The distance between the two is, therefore, equal to 

half the length of the rod. 

 

Note that this calculation could also have been done in this way 
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( )

2

2

2 2

2

2

2

1

12 2

1 1

12 4

1 1

12 4

1

3

1
6 2

3

8 ²

L
I mL m

mL mL

mL

mL

kg m

kgm

 
= +  

 

= +

 
= + 
 

=

= ⋅ ⋅

=

 

 

The mechanical energy at instants 1 and 2 will now be calculated. The calculation is 

done with the origin y = 0 set at the height of the axis of rotation. 

 
Mechanical Energy at Instant 1 

 

At instant 1, the angular speed of the rod is zero and the centre of mass of the rod is 

at y = 0. Therefore, the energy is 
 

21

2

0

E I mgyω= +

=

 

 
Mechanical Energy at Instant 2 

 

At instant 2, the centre of mass of the rod is at y = -1 m. The energy is thus 
 

( )

2

2

1

2

1
1

2

E I mgy

I mg m

ω

ω

′ ′ ′= +

′= + −

 

 
Mechanical Energy Conservation 

 

( )

( )

2

2

1
0 1

2

1
0 8 ² 6 9.8 1

2

3.83

N
kg

rad
s

E E

I mg m

kgm kg m

ω

ω

ω

′=

′= + −

′= ⋅ ⋅ + ⋅ ⋅ −

′ =

 

 

The speed of the end of the rod can finally be found from the angular speed. 
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3.83 2

7.66

rad
s

m
s

v r

m

ω=

= ⋅

=

 

 

 

Example 12.4.2 

A ball initially at rest rolls without slipping down a 5 m high incline (h = 5 m). The ball 

has a mass of 10 kg and a radius of 20 cm. What is the speed of the ball at the bottom of 

the slope? 

 

 
 

 

Mechanical Energy Formula 

 

As there is only one object, the mechanical energy is 
 

mec k
E E mgy= +  

 

This object has a linear motion while spinning around its centre of mass. Therefore, 

the kinetic energy is 
 

2 21 1

2 2
k cm cm

E mv I ω= +
 

 

The mechanical energy is then 
 

2 21 1

2 2
mec cm cm

E mv I mgyω= + +  

 
Mechanical Energy at Instant 1 

 

At instant 1, the speed and the angular speed are zero. The centre of mass of the ball 

is at 5 m + 0.2 m = 5.2 m. (The origin y = 0 was set at the ground.)  

 

The energy is thus, 
 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 26 

 

( )

2 21 1

2 2

0 0 10 9.8 5.2

509.6

cm cm

N
kg

E mv I mgy

kg m

J

ω= + +

= + + ⋅ ⋅

=

 

 
Mechanical Energy at Instant 2 

 

At instant 2, the ball has a speed, and its centre of mass is at y = 0.2 m. The energy 

is thus 
 

( )

2 2

2 2

2 2

1 1

2 2

1 1
10 9,8 0.2

2 2

1 1
19,6

2 2

cm cm

N
cm cm kg

cm cm

E mv I mgy

mv I kg m

mv I J

ω

ω

ω

′ ′ ′ ′= + +

′ ′= + + ⋅ ⋅

′ ′= + +

 

 

To calculate this energy, the moment of inertia of the sphere must be found. This 

moment is 

( )
2

2
²

5

2
10 0.2

5

0.16 ²

cm
I mR

kg m

kgm

=

= ⋅ ⋅

=

 

 

There is also a link between the angular velocity and the velocity of the centre of 

mass since the sphere rolls without slipping. This link is 
 

0.2
cm

v R mω ω= = ⋅  

 

Therefore, the mechanical energy at the instant 2 is 
 

2 2

2

2

2 2

2

1 1
19.6

2 2

1 1
10 0.16 ² 19.6

2 2 0.2

5 2 19.6

7 19.6

cm cm

cm
cm

cm cm

cm

E mv I J

v
kg v kgm J

m

kg v kg v J

kg v J

ω′ ′ ′= + +

′ 
′= ⋅ ⋅ + ⋅ ⋅ + 

 

′ ′= ⋅ + ⋅ +

′= ⋅ +

 

 
Mechanical Energy Conservation 

 

The law of conservation of mechanical energy then gives 
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2509.6 7 19.6

8.367

cm

m
cm s

E E

J kg v J

v

′=

′= ⋅ +

′ =

 

 

 

 

 

Torque Magnitude 
 

We will now look at the rotational equilibrium of an object.  

 

To achieve this, the effects of a force on the rotation 

of an object must be known. Suppose an object can 

spin around an axis of rotation. If a force is exerted on 

this object initially at rest, the object starts to turn. The 

force, therefore, causes angular acceleration.  

 

To have an equilibrium of rotation, it is therefore necessary that the effect of all forces 

cancels each other out. For example, the 

forces exerted by these 2 twins on a swing 

cancel each other out. The force made by 

Samuel seeks to rotate the board 

counterclockwise while the force exerted 

by Xavier seeks to rotate the board 

clockwise. The effects of the two forces 

cancel each other out. 

 
wdrfree.com/stock-vector/download/trigonometry-static-equilibrium-infographic-diagram-209863788 

 

Xavier and Samuel exert identical forces on each side and one might therefore think that 

there is equilibrium if the forces are identical on each side. However, this is not the case. 

The magnitude of the force is not the only thing that 

counts for rotation, the point of application of the 

force is also very important. Let’s illustrate this with 

an example. Suppose two people, one fat and one 

skinny, sit on a swing. If the two people are seated at 

the same distance from the axis of rotation, it is 

known that there can be no equilibrium. The person 

with the lowest mass finds himself perched up in the 

air. 
 

francais.istockphoto.com/photo-9020464-balancoire-bascule-enfant-obese-cartoon-petits-garcons.php 

 

However, it is possible to balance the swing even if the forces on each side are uneven. By 

changing the point of application of a force, the equilibrium can be restored. For a swing, 
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this can be achieved by changing the sitting position of one of the people, as shown in this 

diagram. 
 

 
www.chegg.com/homework-help/questions-and-answers/boy-mass-98kg-seesaw-41kg-girl-

girl-distance-b-44m-center-seesaw-find-distance-seesaw-perf-q37449846 

 

The fact that the force on the left is applied closer to the axis compensates for the force 

being larger. This demonstrates that the location of the point of application of the force is 

also important in rotation. 

 

The equilibrium condition in this situation has been known for a long time. Archimedes 

already knew it in 250 BC. Using the variables shown in the last diagram, the condition is 
 

1 1 2 2w r w r=  

 

Thus, if the father has a weight twice as large as his daughter’s weight, he must sit twice 

as close to the axis of rotation for the equilibrium to be reached. 

 

With a small force, heavy objects could 

be lifted using such a lever. A child 

could lift an elephant if the distance 

between the axis and the point of 

application of the force is large enough 

on the side of the child. This is why 

Archimedes said that he could lift the 

Earth if he had a fulcrum and a long 

enough lever. 

 
perso.b2b2c.ca/login/JP/mecanique/machsimp.html 

 

Therefore, the force multiplied by the distance determines the effect of a force in rotational 

dynamics. This quantity is called the torque (or moment of force). It is denoted by the 

symbol τ. 
 

Frτ =  
 

The SI units for torque are Nm. (Even if a Nm is equivalent a joule, the joule is never used 

for torque.)  
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This first formula of the torque is not our most 

general formula since it is limited to forces 

perpendicular to a line going from the point of 

application of force to the axis of rotation. As soon 

as the third century BC, Archimedes had 

generalized this concept by examining the 

equilibrium of the inclined levers and levers with 

bend beams as shown in the image. Heron of 

Alexandria (1st century AD) and Jordanus de 

Nemore (13th century) also obtained correct 

solutions for the equilibrium of such objects. 
 

catalogue.museogalileo.it/object/FirstorderLeverWithBentBeam.html 

 

The following diagram shows a situation when the force is not perpendicular to the line 

from the axis at the point of application of the force. 
 

 
 

To determine how this force influence the rotation, it is resolved into two components. 

There is a component perpendicular to the line r and a component parallel to the line r. 
 

 
 

Obviously, the parallel component cannot make the object spin; only the perpendicular 

component can make the object rotate. The magnitude of the torque exerted by this 

perpendicular component is 
 

F rτ ⊥=  

 

The perpendicular component of the force F is 
 

( )sin 180

sin

F F

F F

φ

φ

⊥

⊥

= ° −

=
 

 

since sin(180°-φ) = sin φ. Thus, the general formula for the torque is 
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Torque (or Moment of Force) 
 

 

 

sin

or

Fr

F r

τ φ

τ ⊥

=

=

 

 

There is another formula, equivalent to the last one, for the torque. To find it, a straight line 

extending the force vector is drawn. The shortest distance between this straight line and 

the axis of rotation is then measured (�� on the diagram). This shortest distance is 
 

( )

( )

sin 180

sin 180

sin

r

r

r r

r r

φ

φ

φ

⊥

⊥

⊥

= ° −

= ° −

=

 

 

This distance is called the lever arm or the 

moment arm. The moment of force 
 

sinFrτ φ=  
 

then becomes 

 

Another Formula for Torque 
 

 

Frτ ⊥=  

 

It is possible to live without this formula but it sometimes helps to quickly calculate the 

torque in specific situations, depending on the data that are initially given. 

 

These three torque formulas clearly show that the distance is as important as the magnitude 

of the force. If you attempt to close a door by exerting a force on the hinges, the door does 

not close, because the force is exerted directly on the axis of rotation and the torque is zero 

since r = 0. If the force is exerted near the hinges (but not exactly on them), then the door 

can be closed, although the force exerted must be very large. This large force must 

compensate for the small distance between the point of application of the force and the axis 

of rotation. If the force is exerted on the other side of the door (on the side of the handle), 

the door can be closed with a weaker force because the distance is larger. 

 

 

Tools 
 

Torque is a crucial concept to master in order to understand the working of many tools. To 

illustrate this, suppose you want to unscrew a 2 cm diameter bolt which is very difficult to 

unscrew. Let’s say it takes 10 Nm to unscrew it. You first try to unscrew the bolt with your 
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hands. The force is then exerted on the edges of the bolt and the torque is quite small 

because the distance between the point of application of the force and the axis of rotation 

is tiny. Even with a force of 100 N, you would not be able to unscrew the bolt since the 

application of a 100 N force approximately 1 cm from the axis of rotation gives a torque 

of only 1 Nm. (100 N times 0.01 m). To succeed, you would need to exert a 1000 N force. 

 

If you now take a wrench, the 10 Nm needed can be reached much more easily. If the 

wrench is 10 cm long, a force of 100 N is sufficient, and if the wrench is 25 cm long, a 

force of only 40 N is sufficient. This is much less than the 1000 N needed without tools! 

 

 
www.physicsmastered.com/torque-magnitude-ranking-task/ 

 
 
Sign of the Torque 
 

The sign of the torque must also be determined. A positive direction for the rotation must 

be chosen first. The following curve is then drawn: It starts from the axis, goes towards the 

point of application of the force 

and the turns in the direction of 

the force. If this curve then rotates 

in the same direction as the 

positive direction, the torque is 

positive. Conversely, if this curve 

rotates in the opposite direction to 

the positive direction, the torque 

is negative.  

  

 

 

Net Torque 
 

If several forces are acting on an object, the net torque or resulting torque is simply the sum 

of all the torques acting on the object. 

 

Net Torque 
 

 

net
τ τ=  
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Example 12.5.1 

What is the net torque on this wheel? 

 

 

 

 

 

The torque made by each force will be calculated 

separately. 

 

The torque made by the 13 N force is 
 

1 sin

13 0.2 sin 90

2.6

Fr

N m

Nm

τ φ=

= − ⋅ ⋅ °

= −

 

 

This torque is negative because it makes the object 

rotate in the negative direction since the curve that 

leaves from the axis, goes to the point of application of 

the force, and rotates in the direction of the force is in 

the opposite direction to the positive direction. 

 

The torque made by the 15 N force is  
 

2 sin

15 0.2 sin 90

3

Fr

N m

Nm

τ φ=

= − ⋅ ⋅ °

= −

 

 

This torque is negative because it makes the object 

rotate in the negative direction since the curve that 

leaves from the axis, goes to the point of 

application of the force, and rotates in the direction 

of the force is in the opposite direction to the positive direction. 

 

The torque made by the 25 N force is  
 

3 sin

25 0.1 sin130

1.915

Fr

N m

Nm

τ φ=

= ⋅ ⋅ °

=

 

 

This torque is positive because it makes the object 

rotate in the positive direction since the curve that 

leaves from the axis, goes to the point of application 

of the force, and rotates in the direction of the force 

is in the same direction as the positive direction. 
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Therefore, the net torque is 

 

2.6 3 1.915

3.685

net Nm Nm Nm

Nm

τ = − − +

= −
 

 
 
The Torque Made by the Gravitational Force 
 

 

The gravitational force is exerted on each atom of the 

object. There are, therefore, many torques acting on an 

object.   

 

 

Obviously, all these torques will not be added each time. 

Let’s try to get a simpler result. 

 

The torque exerted on one atom is 
 

i i

i i

m gr

m gx

τ ⊥=

=
 

 

The sum of all these torques is 
 

( )
i i

i i

m gx

m x g

τ =

=




 

 

But since 
 

i i

cm

i i cm

m x
x

m

m x mx

=

=




 

 

the torque becomes  
 

cm
mx gτ =  

 

However, according to the diagram on the right, we have 
 

( )sin 180

sin

cm
x d

d

φ

φ

= ° −

=
 

 

where d is the distance between the axis and the centre of mass. Therefore, the torque is 
 

sinmgdτ φ=  
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This equation means that the torque made by gravity is the same as if the full force of 

gravity was applied at the centre of mass. In fact, this is the proof that the point of 

application of the gravitational force must be set at the centre of mass. 

 

Example 12.5.2 

A 10 kg rod is fixed to a pivot as shown in the diagram. What 

is the torque made by the force of gravity on the rod? 

 

 

To calculate the torque made by gravity, consider that the 

force of gravity is exerted 

at the centre of mass, as in 

the diagram to the left. 

 

Therefore, the torque is 

 
sin

10 9.8 0.5 sin160

16.76

N
kg

mgd

kg m

Nm

τ φ=

= ⋅ ⋅ ⋅ °

=

 

 

 

 

 

Example 12.5.3 

A 100 kg metallic plate is fixed to a 

pivot from one of its corners, as shown 

in the diagram. What is the torque made 

by the force of gravity acting on the 

plate? 

 

Once again, the force of gravity is 

considered as being exerted at the 

centre of mass, as shown in the 

diagram. 

 

To calculate the torque, the distance between the centre of mass and the axis must be 

calculated, as well as the angle between the force and the line connecting the axis and 

the centre of mass. When both distance and angle must be calculated, there is a good 

chance that the formula 
 

Frτ ⊥=  

 

allows calculating the torque more simply. In this situation, the lever arm (r�) is 5 m 

according to the diagram below. 
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Therefore, the torque made by the force of gravitation is 
 

( )

( )100 9.8 5

4900

N
kg

Fr

mg r

kg m

Nm

τ ⊥

⊥

=

=

= ⋅ ⋅

=

 

 

 

Relationship Between ττττ and αααα 
 

Suppose that a force is exerted on a small mass in 

an object (this force is the net force on the small 

mass). Then 
 

i i
F m a=
�

�

 
 

The tangential component of this equation is 
 

t
F ma⊥ =  

 

Then, we have 
 

2

2

t

t

t

F ma

F r ma r

a
mr

r

mr

τ

τ α

⊥

⊥

=

=

=

=

 

 

These torques made on each small mass of the object are then added to obtain 
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( )

2

2

i i

i i

m r

m r

I

τ α

τ α

τ α

=

=

=

 
 


 

 

This sum of torque includes torques made by internal forces and torques made by external 

forces. 
 

int ext
Iτ τ α+ =   

 

However, torques made by internal forces cancel 

each other out. Indeed, if two small masses attract 

each other, the two forces are of the same magnitude 

and are directed exactly towards each other. The 

line extending the forces is, therefore, the same for 

both forces, which means that the lever arm (��) is 

the same for both forces. Both forces thus exert the 

same torque, but with opposite signs. The two 

internal torques, therefore, cancel each other out and 

the equation becomes 

 

Newton’s Second Law for Rotational Motion (for an Object That Keeps the Same 

Shape)
 

ext
Iτ α=  

 

This formula was obtained by Euler in 1749. 

 

(The formula applies only if the object does not change shape since at some point in the 

proof, at = αr was used. This formula was obtained with the derivative of v = ωr assuming 

that r is constant. This r would not be constanft if the object changes shape.) 

 

With this equation, it is obvious that an object with a high moment of inertia is harder to 

accelerate. To illustrate this idea, imagine that the same torque is exerted on two objects 

having different moments of inertia. A 

sphere and a cylinder having the same mass 

(say 10 kg) and the same radius (say 20 cm) 

are considered. Two forces of the same 

magnitude (say 50 N) are exerted on each 

of them to make them spin. The torque on 

each object is the same because the forces 

are identical, and they are exerted at the 

same distance from the axis of rotation. This torque is 20 Nm for each object. Even if the 

torques are the same, the effect is different because the moments of inertia are different. 

The moment of inertia of the sphere (0.16 kg m²) is smaller than the moment of inertia of 

the cylinder (0.2 kg m²). The angular acceleration of the sphere (125 rad/s²) is then larger 
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than the angular acceleration of the cylinder (100 rad/s²) even if the torques and masses are 

identical. 

 

The difference comes from the distribution of mass in the object. If the mass is closer to 

the axis of rotation, the object is easier to rotate. This is not surprising because the speed is 

smaller for a mass near the axe of a spinning rigid object. As it is easier to give a small 

speed to a mass, it is easier to give angular speed to an object having its mass closer to the 

axis. The mass of a sphere being more concentrated near the axis that the mass of a cylinder, 

the moment of inertia of the sphere is smaller and it is easier to start its rotation. 

 

Here’s another demonstration of the effect of the distribution of mass on the value of the 

moment of inertia. The two sticks in this clip have the same mass and length, but one is 

much easier to accelerate than the other because the mass is closer to the axis. 

https://www.youtube.com/watch?v=m9weJfoW5J0 

 

In the following video, two rules fall from a vertical position. The two rules have different 

masses and very different moments of inertia. As mass has no influence in free-fall, you 

might think that the two rules will hit the ground at the same time. However, one of the 

rules has a much larger moment of inertia and is much harder to rotate. It, therefore, falls 

with a smaller angular acceleration that the other rule. 

https://www.youtube.com/watch?v=POHD6GRoZEI 

It could be argued that mass added at the end of the rule also increases the torque exerted 

by gravity on the rule and that it should thus fall faster. It is possible that, in certain 

situations, the increase of the angular acceleration caused by the increase of the torque 

dominates the decrease of angular acceleration caused by the increase of the moment of 

inertia. However, for these falling rules, the increase in the moment of inertia dominates. 

 

 

Moment of Inertia and Evolution 
 

An animal greatly benefits if the moment of inertia of its limbs is small because the limb 

is then easier to rotate. If this occurs for feet or legs, then the animal can run faster, which 

is advantageous for catching preys 

or trying to escape a predator. To 

reduce the moment of inertia, the 

mass of the limb must be 

concentrated as close as possible to 

the axis of rotation. This can be 

achieved by placing the muscles 

near the joints. This image of a horse 

clearly shows that the rear leg 

muscles are concentrated near the 

joint (the hip) while the end of the 

leg is very slender. This 

concentration of mass greatly 

reduces the moment of inertia and 
plus.google.com/112686995540721578944/posts 
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allows much faster movements compared to a leg where the muscles are more evenly 

distributed. 

 

 

 

Popeye is, therefore, a real freak of evolution since the mass of 

his arms is concentrated at the end of the arm rather than near the 

shoulder. 

 

 

 

 

 
www.lacrampeauxdoigts.com/?p=1585 

 

This concentration of the muscles near the joint is so advantageous that sometimes muscles 

are quite far from what they control. The muscles that control your fingers are mostly 

located in the forearm, near the elbow. They control the hand joints with long tendons 

going up to the fingers. 

 

 

fr.wikipedia.org/wiki/Muscle_extenseur_des_doigts 

 

Examples of Applications of Newton’s Second Law for 

Rotational Motion 
 

Example 12.6.1 

 

The object shown in the diagram is 

initially at rest. What is the number of 

revolutions made in 10 seconds? Consider 

that the 20 kg masses are point masses and 

neglect the mass of the rod. 
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The number of revolutions can be found from the acceleration by using the laws of 

kinematics. This acceleration can be found from the moment of inertia and the net 

torque acting on the object. 

 

The moment of inertia is 
 

( ) ( )

2

2 2
20 0.5 20 0.5

10 ²

i i
I m r

kg m kg m

kgm

=

= ⋅ + ⋅

=


 

 

The net torque is 
 

sin

10 0.5 sin 90 10 0.5 sin 90

10

net
Fr

N m N m

Nm

τ φ=

= ⋅ ⋅ ° + ⋅ ⋅ °

=


 

 

Thus, the angular acceleration is 
 

2

2

10

10

1

net

rad

s

I

Nm

kgm

τ
α =

=

=

 

 

The angular position of the object after 10 seconds is, therefore, 
 

( )

2

0 0

2

²

1

2

1
0 0 1 10

2

50

rad
s

t t

s

rad

θ θ ω α= + +

= + + ⋅ ⋅

=

 

 

Thus, the number of revolutions is 
 

2

50

2

7.96

N

rad

θ

π

π

=

=

=
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Example 12.6.2 

What is the acceleration of the end of 

this 3 m long rod when it is released? 

There’s no friction. 

 
 

The acceleration is found with 

the angular acceleration using 
 

a rα=  
 

This angular acceleration will be found with Newton’s second law for rotational 

motion. 
 

net
Iτ α=  

 

But to calculate this acceleration, the net torque and the moment of inertia are needed 

first. 

 

Let’s start with the net torque. There are two forces exerted on the rod: the weight and 

the normal force. Therefore, the net torque is 
 

0 sin 90
2

2

N

L
F m mg

L
mg

τ = ⋅ + ⋅ ⋅ °

=


 

 

The distance is zero for the torque made by the normal force because the force is 

exerted directly on the axis of rotation. 

 

Let’s now find the moment of inertia. Here, the moment of inertia of a rod with the 

axis of rotation at the end must be known. This calculation has already been made in 

a previous example. The result was 
 

2

2

2

1

12 2

1

3

L
I mL m

mL

 
= +  

 

=

 

 

Newton’s second law for rotational motion then gives 
 

( )

2

2

1

2 3

3 1
9,8 3

2 3

net

N
kg

I

L
mg mL

m
m

τ α

α

α

=

=

⋅ = ⋅ ⋅
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²
4.9 rad

s
α =  

 

Thus, the acceleration of the end of the rod is 
 

2

²
4.9 3

14.7

rad
s

m

s

a r

m

α=

= ⋅

=

 

 

If an object is placed at the end of this rod, it will not be able to follow the motion of the 

rod when it starts to fall. The acceleration of the end of the rod is 14.7 m/s² while free-

falling objects have an acceleration of 9.8 m/s². This is what is shown in this film. Coins 

are placed everywhere on a rule. At a certain distance from the axis, the acceleration of the 

rule is larger than g and the coins cannot follow the motion of the rule and they lose contact 

with the role. 

https://www.youtube.com/watch?v=wQuwx7jYYyQ 

It can be shown quite easily that the acceleration exceeds g at 2/3 of the length of the rod 

from the axis. 

 

In some problems, there are objects having a linear motion and other objects having 

rotational motion. When this happens, the sum of forces must be done for objects having a 

linear motion and the sum of torques must be done for objects having a rotational motion. 

 
 

Example 12.6.3 

What are the accelerations of the blocks and the 

tension of the string in the situation shown in the 

diagram? There’s no friction here (except between 

the rope and the pulley, so that the string does not 

slip on the pulley). 

 

 

The sum of the forces on the blocks must be 

done since they have translation motion. The 

sum of the torques on the pulley must be done 

since it has a rotational motion. The 

acceleration and the tensions will then be found 

from those equations. 

 

An important note here: the tension changes when the string passes through the pulley. 

In the previous chapters, it did not change, because the mass of the pulley was 

neglected. When the mass of the pulley is not neglected, part of the tension serves to 

accelerate the pulley and the tension changes. That is why T1 and T2 are used for the 

tension. 

 

The forces exerted on the blocks and the pulleys are as follows. 
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Observe carefully how the positive directions were chosen. The x-axis was arbitrarily 

chosen to be directed upwards for the 3 kg block. If the 3 kg block moves in the 

positive direction, then the 4 kg block moves downwards. The positive x-axis must, 

therefore, be directed downwards for the 4 kg block. Also, if 3 kg block moves in the 

positive direction, then the pulley rotates in a clockwise direction. The positive 

direction for the pulley must then be directed clockwise. 

 

The sum of forces on the 3 kg block is (with an x-axis pointing upwards) 
 

1 1 1

x x
F ma

m g T m a

=

− + =


 

 

The sum of forces on the 4 kg block is (with an x-axis pointing downwards) 
 

2 2 2

x x
F ma

m g T m a

=

− =


 

 

The sum of torques on the pulley is 
 

1 2

1 2

sin 90 sin 90

I

T R T R I

T R T R I

τ α

α

α

=

− ° + ° =

− + =


 

 

There are 3 equations and four unknowns (both tensions, the acceleration and the 

angular acceleration). These equations can be solved if a link between the two 

accelerations is found. As the string is tied to the blocks, it has the same acceleration 

as the blocks. If the string does not slip on the pulley, then 
 

string
a R

a R

α

α

=

=
 

 

The torque equation then becomes 
 

1 2

a
T R T R I

R
− + =  
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Using the formula for the moment of inertia of the pulley (a cylinder), this equation is 
 

2

1 2

1 2

1

2

1

2

a
T R T R MR

R

T T Ma

− + =

− + =

 

 

The three equations are now 
 

1 1 1

2 2 2

1 2

1

2

m g T m a

m g T m a

T T Ma

− + =

− =

− + =

 

 

These could be resolved by solving for the tensions in the first two equations and 

substituting in the third equation. The three equations can also be added to obtain 
 

( ) ( ) ( )1 1 2 2 1 2 1 2

1 2 1 2

1

2

1

2

m g T m g T T T m a m a Ma

m g m g m m M a

− + + − + − + = + +

 
− + = + + 

 

 

 

Using the numerical values, this is 
 

²

1
3 9.8 4 9.8 3 4 1

2

9.8 7.5

1.307

N N
kg kg

m
s

kg kg kg kg kg a

N kg a

a

 
− ⋅ + ⋅ = + + ⋅ 

 

= ⋅

=

 

 

The first tension is found with the equation of the forces on the 3 kg block. 
 

1 1 1m g T m a− + =  

 

1 ²

1

3 9.8 3 1.307

33.32

N m
kg s

kg T kg

T N

− ⋅ + = ⋅

=
 

 

The second tension is found with the equation of the forces on the 4 kg block. 
 

2 2 2

2 ²

2

4 9.8 4 1.307

33.97

N m
kg s

m g T m a

kg T kg

T N

− =

⋅ − = ⋅

=

 

 

 

Here are a few notes on this example. 
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If the mass of the pulley had been neglected, the acceleration would have been 1.4 m/s². 

With a 1 kg pulley, the acceleration is now 1.307 m/s². The acceleration is smaller since 

the mass of the pulley must be accelerated now. If there is more mass to accelerate with 

the same forces, the acceleration is smaller. 

 

There is indeed a reduction of the rope tension when it passes through the pulley. As part 

of the force serves to accelerate the pulley, there is less tension in the rope on the other side 

of the pulley. The tension making a torque with the same signs as the acceleration will 

always be larger than the other tension.  

 

The tensions are not the only two forces acting on the pulley. There’s 

also the weight of the pulley and the normal force (at the contact 

between the pulley and the axis of rotation). The weight and the 

normal forces do not have the same magnitude because the normal 

force must cancel the weight and both tensions. These forces were 

not considered because the torque exerted by these forces vanishes 

since they are exerted on the axis of rotation. They exert no torque 

since the distance r (distance between the point of application of the 

force and the axis of rotation) is zero. 

 

In some problems, an object can have both linear and rotation motions at the same time. 

When that happens, the sum of the forces and the sum of the torques exerted on the object 

must both be done. 

 

Example 12.6.4 

A ball rolls without slipping down a 25° incline. 

 

a) What is the acceleration of the ball? 

 

The forces exerted on the ball are: the weight, the normal force and the friction 

force. 

 
 

As the ball makes both linear and rotational motions, the sum of the forces and the 

sum of the torque must be done. Furthermore, the centre of mass of the object must 

be taken as the axis of rotation since the axis is not fixed. Therefore, the equations 

are 
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( )

( )

cos 65

sin 65 0

0

x x f

y y N

F ma mg F ma

F ma mg F

I mgτ α

= → − ° − =

= → − ° + =

= → ⋅



 sin 0NF R+ ° sin 90fF R Iα+ ° =

 

 

In this last equation, the distance is zero for the gravitational force because this 

force is exerted at the centre of mass and the axis of rotation is the centre of mass. 

The angle is zero for the normal force because the force is precisely directed 

towards the centre of mass and this makes the angle between the distance and the 

force vanish. (Alternatively, it can be argued that the lever arm is zero when the 

force is directed towards the axis of rotation.) The only remaining torque is the 

torque due to the force of friction. The latter is then the only force responsible for 

the rotation of the sphere. If the friction were to be removed, the sphere would 

simply slip without spinning (a situation that it has been treated in the chapter on 

forces). 

 

Using the rolling without slipping conditions (acm = αR) and the formula for the 

moment of inertia of a sphere, the sum of torques becomes 
 

2

sin 90

2

5

2

5

f

f

f

F R I

a
F R mR

R

F ma

α° =

  
=   
  

=

 

 

This is the force of friction required for the sphere to roll without slipping. 

 

Using the sum of the x-component of the forces, the acceleration can then be found.  
 

( )

( )

( )

( )

( )

²

cos 65

2
cos 65

5

2
cos 65

5

7
cos 65

5

5
cos 65

7

2.958

f

m
s

mg F ma

mg ma ma

g a a

g a

a g

a

− ° − =

° − =

° = +

° =

= °

=

 

 

The acceleration is smaller than for an object sliding without any friction (which is 

a = g sin 65°). It is quite normal for this acceleration to be smaller because there’s 

a friction force now. This friction must be present so that the ball can roll without 

slipping. 
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b) What is the minimum friction coefficient required so that the ball rolls without 

slipping? 

 

The friction force exerted on the ball is 
 

( )

( )

2

5

2 5
cos 65

5 7

2
cos 65

7

f
F ma

m g

mg

=

= °

= °

 

 

As this is static friction, this force must be less than the static friction maximum. 

This means that 
 

( )
2

cos 65
7

s N
mg µ F° ≤  

 

According to the sum of the y-component of the forces, the normal force is 
 

( )

( )

( )

sin 65 0

sin 65

sin 65

N

N

N

mg F

F mg

F mg

− ° + =

= − − °

= °

 

 

Therefore, 
 

2

7
mg ( )cos 65

s
µ mg° ≤ ( )

( )
( )

sin 65

cos 652

7 sin 65

2

7 tan 65

s

s

µ

µ

°

°
≥

°

≥
°

 

 

The minimum friction coefficient is then 
 

min

2

7 tan 65

0.1332

sµ =
°

=

 

 

If the coefficient of friction were to be less than this value, there would not be 

enough friction to make the ball roll without slipping. The ball would rotate as the 

friction force exerts a torque, but not quickly enough to meet the condition of rolling 

without slipping. 
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The acceleration of an object rolling down an incline is, therefore, influenced by the 

moment of inertia of the object. In all cases, the only thing that changes the value of the 

acceleration, it is the value of the constant in front of mR² in the formula for the moment 

of inertia. To have a more general result, the acceleration can be calculated using the 

moment of inertia I = kmR². (k is a number. It is 2/5 for a sphere, 1/2 for a solid cylinder 

and 1 for a hollow cylinder.) When this is done, the acceleration obtained is 
 

sin

1

g
a

k

θ
=

+
 

 

where θ is the angle of the plane. Therefore, the accelerations are 
 

5
sin

7

2
sin

3

1
sin

2

sphere

solid cylinder

hollow cylinder

a g

a g

a g

θ

θ

θ

=

=

=

 

 

Thus, in a race between a solid cylinder and a hollow cylinder, the solid cylinder always 

wins because its acceleration is larger, regardless of the masses and the radius of the 

cylinders. Be amazed by a demonstration of this. 

https://www.youtube.com/watch?v=gO2CRb8FHLA 

 

The mass of the hollow cylinder is concentrated very far 

from the axis of rotation, which makes it harder to turn. 

This gives it a higher moment of inertia and this is why it 

loses the race. In a race between a sphere and a solid 

cylinder, the sphere would win because it is easier to 

rotate since the mass of the sphere is a little more 

concentrated near the axis of rotation. 

 

 
webspace.utexas.edu/cokerwr/www/index.html/inertiarace.htm 

 

 

Why Does a Rolling Object Slow Down? 
 

It’s possible to think that a rolling object slows down 

because there is friction. Indeed, the forces on the 

object are as follows. 

 

The friction force being in the opposite direction to 

the velocity, it actually slows down the sphere.  

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 48 

 

However, there is a problem with rotation. According to what can be seen in the diagram, 

the weight and normal force do not exert any torque on the sphere. Only the friction force 

is exerting a torque but it is not in the right direction. Indeed, the torque made by the friction 

force is in the same direction as the angular speed, which means that the friction force is 

making the angular speed increase. So, with these forces, the sphere is slowing down while 

turning faster! Obviously, there is something 

fishy. 

 

In reality, the situation is a bit subtler than that. 

There is a deformation of the object and of the 

surface at the point of contact, so that the situation 

looks more like this (the deformation is 

exaggerated in this diagram). 
www.lhup.edu/~dsimanek/scenario/rolling.htm 

 

In this case, there are normal forces distributed over the entire surface of contact but the 

normal forces are slightly larger on the side where the ball is moving. These normal forces 

on this side of the ball are exerting a torque in a direction opposite to the rotation of the 

ball, thereby decreasing the angular speed of the ball (in addition to cancel the torque 

exerted by the friction force and the normal forces on the other side of the ball). 

 

 

Motion in Space 
 

When a force is exerted on an object in space, this force will obviously accelerate the 

object. However, there is a good chance that the force will also generate a torque on the 

object. As soon as the direction of the force is not aligned with the center of mass of the 

object, there is a torque acting on the object and this torque will give an angular acceleration 

to the object. It is therefore very difficult to exert a force on an object in space without it 

generating rotation. 

 

That's why the next scene, from the movie Gravity, is not really possible. 

https://www.youtube.com/watch?v=y4isfJNtK98 

It seems pretty well done if you only think about the acceleration generated by the force. 

However, the effects of the torque are not well represented. Clearly, the direction of the 

force is not aligned with the center of mass of the system formed by the astronaut and the 

fire extinguisher, and each burst of gas should generate a rotation. The rotation would then 

constantly change the direction of the force and it would be practically impossible to move 

in the desired direction. 

 

To be able to steer a ship in space, the places where the forces are applied must have been 

well chosen to ensure that the forces will not cause unwanted rotations of the ship. 
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Work Formulas  
 

The work done by a constant torque on a spinning 

object is (note that ∆s is an arc of a circle) 
 

( )

cos

sin 90

W F s

W F s

γ

γ

= ∆

= ∆ ° +
 

 

However, as the angle between the force and the 

distance is 90°+γ, the torque is 
 

( )sin 90Frτ γ= ° +  

 

Then, the work is 
 

( )

( )

sin 90

sin 90

W F s

s
Fr

r

s

r

γ

γ

τ

= ∆ ° +

∆
= ° +

∆
=

 

As the length of the arc of a circle divided by the radius is the angular displacement 
 

s

r
θ

∆
∆ =  

 

the work is 
 

Work Done by a Constant Torque
 

 

W τ θ= ∆  

 

If the torque is not constant, the angular displacement must be divided into small angles, 

and the work done is calculated for this infinitesimal rotation. With an infinitesimal 

displacement, the angle is so small that the force does not have time to change and it can 

be considered as being constant. Then, the work is 
 

dW dτ θ=  
 

If all these infinitesimal works are then summed, the work is 

 

Work Done by a Variable Force
  

W dτ θ=   
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If the force is conservative, Then W = -∆U, and 

 

Potential Energy if the Force Acting on a Rotating Object is Conservative 

 

U dτ θ= −  

 

 

Power Formulas 
 

Once again, power is defined as being the work divided by the time required to do this 

work. For average power, this gives 

 

Average Power
  

W
P

t
=

∆
 

 

For instantaneous power, the calculation is made by taking a very small time, an 

infinitesimal time. 
 

dW d
P

dt dt

τ θ
= =  

 

Therefore, 

 

Instantaneous Power
 

 

P τ ω=  

 

 
Work-Energy Theorem for Rotation 
 

As for a motion in a straight line, the change in rotational kinetic energy can be calculated 

with the work. Here is the proof. 

 

The work on a small part of an object is 
 

2 2

2 2 2 2

1 1

2 2

1 1

2 2

W mv mv

m r m rω ω

′= −

′ ′= −

  

 

Note that different r were used. Maybe the object changed shape. 

 

If the work on each small part is added to calculate the net work, the result is 
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( ) ( )

2 2 2 2

2 2 2 2

1 1

2 2

1 1

2 2

net
W m r m r

mr mr

ω ω

ω ω

′ ′= −

′ ′= −

 

 
 

 

Since the terms in brackets are the moments of inertia before and after the change, the net 

work is 
 

2 21 1

2 2
net

W I Iω ω′ ′= −  

 

As the terms on the right are the rotational kinetic energies, this means that 

 

Work-Energy Theorem for Rotational Motion
 

 

net k
W E= ∆  

 

The work-energy theorem, therefore, also works for rotational motion. Also note that this 

is the first time that we have a formula that can be applied to an object that changes shape 

since the r’s could be different at instant 2. If the distances between the masses and the axis 

can change, then the object can change shape. On the other hand, the object is still rigid 

since ω is still the same everywhere in the object at instant 1 and instant 2.     

 

Example 12.7.1 

 

A motor exerting a torque of 5 Nm spins a circular 

plate initially at rest. The plate has a mass of 5 kg and 

a radius of 20 cm. 

 

 

 

a) What is the average power of the motor 

during the first 10 seconds? 

 

To find the average power, the work done by the motor must first be calculated. 

The torque is known, but the angular displacement is not. This angle is found with 

the angular acceleration which is found with 
 

net
Iτ α=  

 

To find it, the moment of inertia of the plate must be found. This moment is 
 

( )

2

2

1

2

1
5 0.2

2

I mR

kg m

=

= ⋅ ⋅
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0.1 ²kg m=  
 

The angular acceleration is, therefore, 
 

²

5

0.1 ²

50 rad
s

I

Nm

kg m

τ
α =

=

=

 

 

The angular displacement in 10 seconds is thus 
 

( )

2

0 0

2

0

2

²

1

2

1

2

1
0 50 10

2

2500

rad
s

t t

t t

s

rad

θ θ ω α

θ ω α

θ

θ

− = +

∆ = +

∆ = + ⋅ ⋅

∆ =

 

 

Therefore, the work is 

 

5 2500

12 500

W

Nm rad

J

τ θ= ∆

= ⋅

=

 

 

and the average power is 
 

12 500

10

1250 1.68

W
P

t

J

s

W hp

=
∆

=

= =

 

 
b) What is the instantaneous power of the motor 10 seconds after the start of the 

motion? 

 

After 10 seconds, the angular speed is 
 

0

²
0 50 10

500

rad
s

rad
s

t

s

ω ω α= +

= + ⋅

=

 

 

The instantaneous power is thus 
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5 500

2500 3.35

rad
s

P

Nm

W hp

τ ω=

= ⋅

= =

 

 

(Note that the change in kinetic energy in 10 seconds 
 

( )

2 2

0

2

1 1

2 2

1
0.1 ² 500 0

2

12 500

k

rad
s

E I I

kg m

J

ω ω∆ = −

= ⋅ ⋅ −

=

 

 

is equal to the work as stated by the work-energy theorem.) 

 

 

 

Let’s start with a definition of the angular momentum. Later, it will be shown why this 

quantity is useful. 

 

 

Angular Momentum Definition 
 

General Formula 

 

The angular momentum of a mass in relation to an axis is given by the following vector 

product. 
 

L r p= ×
�
� �

 
 

where p is its momentum. According to this definition, this is like the moment of 

momentum. The angular momentum is actually a vector, but here the magnitude of this 

vector is the only thing needed (with the correct sign depending on the direction of 

rotation). According to what is known about a vector product, the magnitude of the angular 

momentum 
 

L r mv= ×
�
� �

 

 

is 

 

Angular Momentum (Moment Cinétique in French)
 

 

 

sinL mvr ψ=  
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It may seem odd to have a velocity in any direction like this since the speed must be 

perpendicular to the radius if the mass is part of an object rotating around an axis. In fact, 

this definition of angular momentum is very general and allows it to be applied to 

something other than a rigid rotating object. For example, it can be used to describe the 

motion of one object orbiting around another. 

 

 

Sign of Angular Momentum 

 

The sign of the angular momentum is found in a way similar to the sign of the torque. We 

start by choosing what the positive direction will be for rotation. Then start from the axis, 

go towards the mass and turn in 

the direction of the velocity. If 

the rotation obtained is in the 

same direction as the positive 

direction chosen, the angular 

momentum is positive. If the 

rotation obtained is in the 

opposite direction of the positive 

direction chosen, the angular 

momentum is negative. 

 

  

Angular Momentum of a Mass Moving in a Straight Line 

 

One might think that the angular momentum of an object moving in a straight line at 

constant speed is not constant since r and ψ are constantly changing. However, the changes 

in these two variables cancel each other so that L remains constant. 

 

It is quite easy to understand why by examining the diagram on the left. Then, it can be 

seen that 

sin
r

r
ψ⊥ =  

 

where �� is the smallest distance between the 

trajectory (in a straight line) of the particle and 

the axis of rotation. Then, the angular 

momentum can be written as  
 

sinL mvr

mvr

ψ

⊥

=

=
 

 

As the value of �� is constant, the angular momentum is constant. 

 

The angular momentum can, therefore, be calculated with the following formula. 
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Angular Momentum of a Mass Travelling in a Straight Line 

 

L mvr⊥=  

 

Precisely, �� is the smallest distance between the rotation axis and the trajectory of the 

centre of mass of the object moving in a straight line. 

 

 

Angular Momentum of a Rigid Rotating Object 

 

To have the angular momentum of a rigid object rotating around an axis, the angular 

momenta of all the particles of the object are added. 
 

sinL mvr ψ=  

 

Since v sinψ is the component of the velocity perpendicular to r, we have 
 

L mv r⊥=  

 

As  v�= ωr, the angular momentum is 
 

2

L m rr

mr

ω

ω

=

=




 

As the object is rigid, ω is constant and the equation 

becomes 
 

( )2L mr ω=   

 

Since this sum is the moment of inertia, the angular momentum is 

 

Angular Momentum of a Rigid Rotating Object
 

 
L Iω=  

 

Note that the object could change shape. Rigid only means that ω is the same everywhere 

in the object. This does not prevent it from changing shape (stretching for example). 

 

 

Newton’s 2nd Law (Again!) 
 

The derivative of the angular momentum is 
 

dL dp dr
r p

dt dt dt
= × + ×

� � �

� �

 

 

As 
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     et     
net

dp dr
F v

dt dt
= =

� �
�

�

 

 

the derivative is 

net

dL
r F v p

dt
= × + ×

�

�
� � �

 

 

However, 0v p× =
� �

 since the vectors v and p are parallels. Thus 
 

net

dL
r F

dt
= ×

�

�
�

 

 

Here, only the magnitude of this vector is of interest. As the magnitude of the vector 

product on the right is 
 

sin
net net

net

r F rF φ

τ

× =

=

�
�

 

 

the result is 

 

Newton’s Second Law for Rotational Motion
 

 

net

dL

dt
τ =  

 

This equation is more general than the other version of Newton’s 2nd law for rotation, which 

was�net = Iα. Let’s see how �net = Iα is obtained from the new version of this law for a 

rotating object. 
 

( )

net

net

net

net

dL

dt

d I

dt

d
I

dt

I

τ

ω
τ

ω
τ

τ α

=

=

=

=

 

 

We notice that to obtain the correct result, I must be a constant so that it can be put out of 

the derivative. Thus, the first version is valid only if the moment of inertia is a constant 

(this is what we assumed when we proved �net = Iα). 

 

This new version is more general because it can be applied if the moment of inertia is not 

constant. It is only when the moment of inertia I is constant (so when the object does not 

change shape) that the net torque is equal to Iα. 
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Angular Momentum Conservation 
 

Condition for Which There is Conservation 

 

The sum of the torques acting on a system is  
 

net

system system

system

net

system

tot

net

system

dL

dt

d L

dt

dL

dt

τ

τ

τ

=

 
 
 =

=

 






 

 

The sum of all the net torques acting on the system is simply the sum of all the torques 

acting on the system (since the sum of a sum is a sum). 
 

tot

system

dL

dt
τ =  

 

The torques acting on a system are made by internal or external forces. As the sum of the 

internal torque must vanish, the equation becomes 

 

ext int

system system

τ τ+ 

ext

tot

tot

system

dL

dt

dL

dt
τ

=

=
 

 

If the sum of external torques is zero, then 
 

0

constant

tot

tot

dL

dt

L

=

=

 

 

This brings us to 

 

Law of Conservation of Angular Momentum
 

 

constant if 0tot ext

system

L τ= =  

 

This is a new conservation principle that can be used to solve problems. It is mostly this 

aspect of the kinetic moment that will interest us here. 
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Experimental Demonstrations 

 

To illustrate this principle, consider the example of a 

person (me) sitting on a swivel bench (without 

friction) holding in his hands a wheel whose axis is 

vertical. 

 

If the person starts spinning the wheel in one direction, 

the person starts spinning in the opposite 

https://www.youtube.com/watch?v=VefD0BLTGYA 

Initially, the angular momentum is zero since nothing 

spins. If the person does not touch the ground and there 

is no friction, there is no external torque, and the 

angular momentum must always remain zero. Thus, if 

the person spins the wheel in one direction (chosen as 

the positive direction), then the person has to spin in 

the opposite direction (negative direction) so that the sum of the angular momentum of the 

wheel (positive) and of the person (negative) still vanishes. Since the moment of inertia of 

the person is larger than the moment of inertia of the wheel, the angular velocity of the 

person is smaller than the wheel’s angular velocity. 

 

This is also what is happening on this rotating platform. 

https://www.youtube.com/watch?v=w6QaxdppJaE 

Initially, everything is at rest and the angular momentum is zero. When the person starts to 

walk in one direction, the plate begins to rotate in the opposite direction. The angular 

momentum of the plate has the same magnitude as the angular momentum of the person 

but with an opposite sign so that the total angular momentum is still zero. 

 

This law is used here in this Simpsons episode. When Skinner begins to run in one direction 

on a container, the container starts rotating in the opposite direction. 

https://www.youtube.com/watch?v=Cnros82SUf0 

 

This law also explains the crucial role 

played by the tail rotor on a helicopter. 

Initially, when the main rotor does not 

spin, the angular momentum is zero. 

When the main rotor starts, the angular 

momentum must remain zero because the 

torque made on the main rotor comes 

from an internal torque. The bottom of 

the helicopter should, therefore, start to 

spin in a direction opposite to the main rotor, although with much less angular velocity 

because the moment of inertia of the bottom is much larger than that of the rotor. When the 

helicopter is touching the ground before takeoff, there is an external force (friction force 

exerted by the ground) that prevents the bottom from spinning. Then, the main rotor can 

spin while the bottom of the helicopter remains at rest because angular momentum does 

seniorphysics.com/physics/eei.html 
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have to be conserved when there are external torques. However, when the helicopter leaves 

the ground, the external torque made by the friction force with the ground disappears and 

the bottom of the chopper should begin to spin in a direction opposite to the rotation of the 

main rotor. The tail rotor then prevents this rotation. (It also allows the driver to control the 

heading of the helicopter.) If the tail rotor breaks, the helicopter must get to the ground as 

fast as possible before the rotation of the cockpit becomes too large. This is what happens 

in these short video clips. In each case, the problems began when the tail rotor broke. 

https://www.youtube.com/watch?v=vMaF4X9AtAI 

https://www.youtube.com/watch?v=q3idQKi5EqM (what a pilot!) 

https://www.youtube.com/watch?v=YDdbznlcGIU 

 

Returning to the swivel bench, the person can also start with a wheel spinning in one 

direction and then reverse the wheel. 

https://www.youtube.com/watch?v=0rVcJXWROvQ 

In this case, the wheel has initially some angular momentum (the initial direction of rotation 

is chosen as the positive direction). When the wheel is inverted, it spins in the opposite 

direction and its angular momentum becomes negative. However, as there is no external 

torque (the person does not touch the ground), the angular momentum must be conserved. 

Therefore, the person must start to spin in the positive direction (the same direction as the 

initial direction of rotation of the wheel). The sum of the angular momentum of the person 

(positive) and of the angular momentum of the wheel (which is now negative) must match 

the initial angular momentum of the wheel (which was positive). 

 

 

Main Uses of the Law of Conservation of Angular Momentum 

 

The conservation of angular momentum has two main utilities. 

 

1. Collisions involving rotational motion. 

2. When the moment of inertia of an object changes. 

 

 

Conservation of Angular Momentum in Collisions 
 

In rotation, angular momentum plays the same role as momentum in linear motion. In a 

collision, the impact between the two objects generates only internal forces. As the sum of 

the torques created by internal forces vanishes, the angular momentum is conserved if the 

sum of external torques is zero (or if they are neglected). 

 

The law of angular momentum must be applied to collisions where there are both rotational 

and linear motions. A child running in a straight line who then jumps on a rotating platform 

is an example of this kind of collision. Initially, there is a linear motion whereas there is a 

rotational motion at the end. 
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Example 12.8.1 

A 60 kg (fat) child runs at 4 m/s 

towards a circular plate that is 

initially spinning in the direction 

indicated in the diagram. What is 

the angular speed when the child 

is on the plate? 

 

 

user.physics.unc.edu/~rowan/p24site/p24units/unit11/WCHAP11-7.html 
 

As this is a collision involving a rotational motion, the law of conservation of angular 

momentum will be used. 

 
Angular Momentum at Instant 1 

 

The angular momentum at instant 1 is 
 

plate child
L L L

I mvrω ⊥

= +

= +
 

 

Here, the formula Iω is used for the object that rotates (the plate) and the formula 

mvr�  is used for the object moving in a straight line (the child). As the moment of 

inertia of the plate is ½MR², the angular momentum is 
 

( )

2

2

1

2

1
160 2 1 60 4 2

2

rad m
s s

L MR mvr

kg m kg m

ω ⊥= +

= ⋅ ⋅ ⋅ + − ⋅ ⋅

 

 

The angular momentum of the plate is positive because 

it spins in the positive direction. The child’s angular 

momentum is negative because the arrow that starts 

from the axis, goes to the child and then rotates in the 

direction of velocity is in the opposite rotation direction 

chosen as the positive direction. 

 

Thus, the angular momentum at instant 1 is 
 

2 2

2

320 480

160

plate child

kgm kgm

s s

kgm

s

L L L= +

= −

= −
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Angular Momentum at Instant 2 

 

At instant 2, the angular momentum is 
 

( ) ( )

2 2

2 2

1

2

1
160 2 60 2

2

560 ²

plate child

L I

I I

Mr mr

kg m kg m

kgm

ω

ω ω

ω ω

ω

ω

′ ′ ′=

′ ′ ′ ′= +

′ ′= +

 
′= ⋅ ⋅ + ⋅ ⋅ 

 
′= ⋅

 

 
Angular Momentum Conservation 

 

The law of conservation of angular momentum then gives 
 

²
160 560 ²

0.2857

kgm

s

rad
s

L L

kg m ω

ω

′=

′− = ⋅

′ = −

 

 

As it is negative, the plate spins counterclockwise (since our positive is in a clockwise 

direction). 

 

 

Moment of Inertia Changes 
 

Basic Formula 

 

This second application allows finding the angular velocity of a spinning object if it 

changes its shape. If the shape modification is done with internal forces, the angular 

momentum is conserved and 
 

L L

I Iω ω

′=

′ ′=
 

 

When the shape changes, the moment of inertia changes and the angular velocity must 

change so that the product Iω remains constant. 

 

 

Experimental Demonstrations 

 

Imagine a person sitting on a swivel bench holding masses in his hands. At first, his arms 

are extended horizontally. If he brings the masses closer to the axis of rotation while 

spinning, the moment of inertia decreases and the angular speed increases. 
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www.rakeshkapoor.us/ClassNotes/classnotes.php?notes=TorqueAndAngularMomentum&index=1 

 

https://www.youtube.com/watch?v=wlKUjsSJRvg 

 

This is what happens when a figure skater spins faster and faster. No forces are exerted by 

the feet of the skater to turn more rapidly. The angular speed simply increases because the 

figure skater concentrates its mass closer to the axis of rotation to decrease its moment of 

inertia.  

https://www.youtube.com/watch?v=AQLtcEAG9v0 

Note how she tries to increase her moment of inertia at the start when she pushes on the ice 

to start spinning. Beginning with a high moment of inertia, she may decrease it further and 

obtain a larger angular velocity. 

 

A demonstration can also be done on a rotating platform like those found in some parks. 

Put several people on the edge of the platform and then give the platform a small angular 

speed. Then, tell all the people to move towards the centre. The moment of inertia then 

decreases and the platform spins faster (it may not be easy to move towards the centre 

because an important centripetal force will be required as the angular speed increases). 

Since I do not have any friend, I did it all by myself… 

https://www.youtube.com/watch?v=6S5fyCFg30g 

 

Example 12.8.2 
 

What will the angular speed of this object be if its shape changes as shown in the diagram? 

(Consider that the 10 kg masses are point masses.) 
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As there is a change of moment of inertia, the principle of angular momentum 

conservation will be used. 

 
Angular Momentum at Instant 1 

 

At instant 1, the angular momentum is 

 

( )

( ) ( )

( )

2 2

2 2

²

1
2

2

1
50 0.4 2 10 0.7 2

2

4 ² 9.8 ² 2

86.708

cylinder spheres

c c s

rad
s

rad
s

kgm

s

L I

I I

m r m r

kg m kg m

kgm kgm

ω

ω

ω

π

π

=

= +

 
= + 
 

 
= ⋅ ⋅ + ⋅ ⋅ ⋅ 
 

= + ⋅

=

 

 

Angular Momentum at Instant 2 

 

At instant 2, the angular momentum is 
 

( )

( ) ( )

( )

2 2

2 2

1
2

2

1
50 0.4 2 10 0.4

2

4 ² 3.2 ²

7.2 ²

cylinder spheres

c c s

L I

I I

m r m r

kg m kg m

kgm kgm

kgm

ω

ω

ω

ω

ω

ω

′ ′ ′=

′= +

 
′= + 

 

 
′= ⋅ ⋅ + ⋅ ⋅ ⋅ 

 

′= + ⋅

′= ⋅

 

 
Angular Momentum Conservation 

 

The law of conservation of angular momentum then gives 
 

²
86.708 7.2 ²

12.04

kgm

s

rad
s

L L

kgm ω

ω

′=

′= ⋅

=

 

 

The angular speed thus increased from 1 revolution per second to 1.92 revolutions 

per second. When the masses get nearer the axis of rotation, the angular velocity 

increased as expected. 
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Angular Velocity of an Object in Circular Motion  
 

When an object makes a circular motion and the sum of the external torques vanishes, the 

angular momentum is conserved. This is the case with this coin. 

https://www.youtube.com/watch?v=0khvqYjKoK4 

Actually, there is a small external torque because of friction and the angular momentum 

slowly decreases here. Despite this, the effect of the conservation of angular momentum 

can be seen. As the coin descends into the hole, it gets closer to the axis of rotation, and 

this reduces the moment of inertia. However, as the angular Iω must remain constant (or 

almost constant), the angular velocity of the coin must increase. This increase in the angular 

velocity (equivalent to a decreasing period) is quite evident in the clip. 

 

 

 

 

 

 

Angular Displacement 
 

2 1θ θ θ∆ = −  

 

Average Angular Velocity 
 

t

θ
ω

∆
=

∆
 

 

Instantaneous Angular Velocity 
 

d

dt

θ
ω =  

 

Relationship between Angular Velocity and Period (if ωωωω is Constant) 
 

2

T

π
ω =  

 

Average Angular Acceleration 
 

t

ω
α

∆
=

∆
 

 

Instantaneous Angular Acceleration 
 

d

dt

ω
α =  
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Rotational Kinematics Equations for Constant Angular Acceleration 
 

( )

( )

2

0

2 2

0 0

0 0

1

2

2

1

2

o

o

t

t t

t

ω ω α

θ θ ω α

α θ θ ω ω

θ θ ω ω

= +

= + +

− = −

= + +

 

 

Distance Travelled at a Distance r from the Axis if the Angular Displacement is ∆∆∆∆θθθθ 
 

s r θ∆ = ∆  

 

Speed at a Distance r from the Axis 
 

v rω=  
 

Magnitude of the Acceleration at a Distance r from the Axis 

 

Tangential Acceleration 
t

a rα=  

Centripetal Acceleration   
2

2

c

v
a r

r
ω= =  

Acceleration   2 2

t c
a a a= +  

 

Link between Speed and Angular Velocity if there is Rolling without Slipping 
 

cm
v Rω=  

 

Link between Acceleration and Angular Acceleration if there is Rolling without 

Slipping 

cm
a Rα=  

 

Link between Speeds and Accelerations for a Rope Passing through a Pulley without 

Slipping 
 

rope

rope

v r

a r

ω

α

=

=
 

where r is the distance between the rope and the axis of rotation 

 

Rotational Motion Transmission 
 

1 1 2 2R Rω ω=  

 

Moment of Inertia of an Object 
 

2

i i
I m r=  
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Moment of Inertia of 4 Common Uniform Objects 

 
 

I from Icm (parallel axis theorem)
  

2

cm
I I mh= +  

 

Kinetic Energy of an Object Rotating around a Stationary Axis Passing through the 

Centre of Mass 

21

2
k cm

E I ω=  

 

Kinetic Energy of an Object Rotating around an Axis not Passing through the Centre 

of Mass 

21

2
k

E Iω=  

 

Kinetic Energy of an Object Making both Linear and Rotational Motion 
 

2 2

Translation Rotation 

1 1

2 2

k k

k cm cm

E E

E mv I ω= +
��� �����

 

 

Torque (or Moment of Force)
  

sin

or

or

Fr

F r

Fr

τ φ

τ

τ

⊥

⊥

=

=

=

 

 

Net Torque 
  

net
τ τ=  

 

Newton’s Second Law for Rotational Motion (for an Object That Keeps the Same 

Shape) 

ext
Iτ α=  

 



Luc Tremblay   Collège Mérici, Quebec City 

 

2025 Version  12 - Rotation 67 

 

Work Done by a Constant Torque
  

W τ θ= ∆  

 

Work Done by a Variable Force
  

W dτ θ=   

 

Potential Energy if the Force Acting on a Rotating Object is Conservative 
 

U dτ θ= −  

 

Average Power
  

W
P

t
=

∆
 

 

Instantaneous Power
  

P τ ω=  

 

Work-Energy Theorem for Rotational Motion
  

net k
W E= ∆  

 

Angular Momentum
  

sinL mvr ψ=  

 

Angular Momentum of a Mass Travelling in a Straight Line 
 

L mvr⊥=  

 

Angular Momentum of a Rigid Rotating Object 
 

L Iω=  

 

Newton’s Second Law for Rotational Motion
  

net

dL

dt
τ =  

 

Law of Conservation of Angular Momentum
  

constant if 0tot ext

system

L τ= =  
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12.1 Rotational Kinematics 
 

1. What is the average angular velocity of the Earth due to its rotation on itself? 

 

 

2. The angular acceleration of this wheel initially at rest is 5 rad/s². 

 

a) What is the angular velocity of the wheel after 

10 seconds? 

b) How many revolutions does the wheel make in 10 

seconds? 

c) How much time does the wheel take to make 

50 revolutions? 

 

 

3. The angular speed of a wheel decreases from 120 RPM (revolutions per minute) to 

80 RPM in 20 seconds. How many revolutions did the wheel make during this time? 

 

 

4. The angular position of a rotating disk is given by the following formula. 
 

2

²
10 0,5rad rad

s s
t tθ = −  

 

a) How many revolutions does the disk make in 5 seconds? 

b) What is the average angular velocity of the disk during these 5 seconds? 

c) What is the angular velocity of the disk at t = 4 s? 

d) What is the angular acceleration of the disk at t = 2 s? 

e) When does the angular velocity of the disk vanish? 

 

 

5. This rod spins about an axis as shown in the diagram. The initial angular speed is 

60 RPM while it is only 12 RPM after 0.2 seconds. The 

angular acceleration is constant. 

 

a) What is the speed of the ends of the rod at t = 0 s? 

b) What is the angular acceleration of the rod? 

c) What is the centripetal acceleration of the ends of the 

rod at t = 0 s? 

d) What is the tangential acceleration of the ends of the 

rod at t = 0 s? 

e) What is the magnitude of the acceleration of the ends of the rod at t = 0 s? 
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6. The pulley shown in this diagram has rotated 200°. What was 

the displacement of each block? 

 

 

 

 

 

 

 

7. The pulley shown in this diagram spins with an angular 

velocity of 8 rad/s in a clockwise direction. What is the 

velocity of each block? 

 

 

 

 

8. A car having a speed of 40 m/s slows down and stops over a distance of 160 m with 

a constant acceleration. The wheels have a diameter of 80 cm. 
 

a) What is the initial angular velocity of the wheels? 

b) What is the angular acceleration of the wheels during braking? 

 

 

9. A pulley is initially at rest. A rope wound around the pulley is then pulled, which 

gives a constant angular acceleration to the pulley. At some point during this 

motion, the pulley makes 60 revolutions whilst its angular velocity passes from 

90 RPM to 300 RPM. 
 

a) What is the angular acceleration of the pulley? 

b) How many revolutions did the pulley make when its 

speed increased from 0 RPM at 90 RPM? 

 

 

10. In a biology experiment to stun ants, Marilou places 2 of these insects in the 

apparatus shown in the diagram. Initially, the apparatus does not spin. When 

Marilou starts the device, the rod has an angular acceleration of 8 rad/s² for 

4 seconds. The speed remains constant thereafter. 

 
www.chegg.com/homework-help/questions-and-answers/physics-archive-2007-october-11 
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a) How many revolutions do the apparatus make during the first 5 seconds? 

b) How long does it take for the apparatus to make 100 revolutions? 

 

 

11. In the situation shown in the diagram, the largest toothed wheel has a radius of 

25 cm and the smallest toothed wheel has a radius of 15 cm. The large-toothed 

wheel has an angular velocity of 1200 RPM. 

 

a) What is the angular speed of the small 

toothed wheel? 

b) What is the speed of the chain linking the 

two toothed wheels? 

 
www.chegg.com/homework-help/questions-and-answers/gears-important-components-

mechanical-devices-mechanical-clocks-bicycles-fact-present-moto-q3085038 

 

 

12.2 Rotational Kinetic Energy and Moment of Inertia  
 

12. The small cars at the end of these metal rods of this ride 

each has a mass of 120 kg. 

 

a) What is the moment of inertia of the ride when it 

rotates around an axis located at the centre if the 

masses of the rods are neglected and if the cars are 

considered as being point masses? 

b) What is the kinetic energy of this ride if it rotates 

with an angular speed of 12 RPM? 

 

 

 

 

13. In her clown classes, Natasha must spin an object 

as shown in the diagram. The rods have a 

negligible mass and a length of 30 cm (from one 

ball to another). 

 

a) What is the moment of inertia of this object 

when she spins it around the axis shown in the 

diagram if the balls are considered as being 

point masses? 

b) What is the kinetic energy of this object when 

she spins it around the axis shown in the 

diagram with an angular velocity of 2 rad/s? 

 
www.chegg.com/homework-help/questions-and-answers/bizarre-baton-created-taking-

identical-balls-mass-0264-kg-fixing-rods-length-116-m-length--q4622982 
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14. What is the moment of inertia of this object if the 

axis of rotation is… 

 

a) the line AB? 

b) the line CD? 

    

(The rods have negligible masses and the balls 

are considered as point masses.) 

 

 

 

 

15. What is the kinetic energy of this object composed of two masses connected by a 

60 cm long rod if its linear speed is 10 m/s and if it spins around its centre of mass 

with an angular velocity of 20 rad/s? 

 

(The rod has a negligible mass and the balls 

are considered as point masses.) 

 

 

 

 

16. The diagram indicates the speed of the two ends of a rod at 

a specific time. The rod is 1 m long and has a mass of 3 kg. 

 

a) What is the rotational kinetic energy of rotation of the 

rod? 

b) What is the linear kinetic energy of rotation of the 

rod? 

c) What is the total kinetic energy of rotation of the rod? 

 

 

 

 

12.3 Moment of Inertia of Extended 
Object 

 

17. What is the moment of inertia of this solid sphere 

with a mass of 2 kg and a radius of 6 cm if the axis 

of rotation is the rod that passes through the sphere? 
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18. What is the moment of inertia of this object if the axis of rotation is the one shown 

in the diagram? 

 

(The rod does not have 

a negligible mass and 

the balls are not 

considered as point 

masses.) 

 

 

 

19. What is the moment of inertia of 

this object made of a material 

with a density of 5000 kg/m³ if 

the axis of rotation is as shown 

in the diagram? 

 

(The large disk at the bottom is 

identical to the large disk at the 

top.) 

 

 

 

 

20. Here is a tin can filled with air. The walls (side, lid and 

bottom) are thin and made of a material having a 

surface density of 1 g/cm². What is the moment of 

inertia of this tin can if the axis of rotation is as shown 

in the diagram? 

 

 

 

 

12.4 Mechanical Energy Conservation 
 

21. This beam held by a cable has a mass of 100 kg and a 

length of 6 m. With what speed will the end of the 

beam hit the ground if the cable breaks? 
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22. An 800 g ball having a radius of 

10 cm is held at rest at the position 

shown in the diagram. The ball is 

then released (without pushing it) 

and it rolls in the bowl without 

slipping. What is the speed of the 

ball when it is at the lowest point of 

the bowl? 

 

 

 

23. A 4000 kg log having a 50 cm diameter and a 10 m 

length falls from a truck and then rolls along a 40° 

slope. Throughout the descent, the log rolls without 

slipping. At the top of the slope, the log had a speed 

of 5 m/s. What is the speed of the log at the bottom 

of the slope if the slope is 400 m long? 

 

 

 

 

24. A 5 kg mass is initially at rest in the situation shown in the 

diagram. The mass then descends 8 m. What is the speed of 

the 5 kg mass when it is 8 m lower? (Consider that the 

pulley is a disk.) 

 

 

 

 

 

 
www.chegg.com/homework-help/questions-and-answers/physics-archive-2012-

october-19 

 

 

 

25. The object shown in the diagram is composed of a rod and a disk. This object, 

initially at rest in the position 

shown in the diagram, is then 

released. What will the angular 

speed of this object be when the 

rod is vertical? 
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26. In the situation shown in the diagram, the spring is neither stretched nor compressed 

initially. What will the speed of the 

blocks be after a displacement of 

1 m if they were initially at rest? 

 

(Consider that the pulley is a disk 

and that there is no friction between 

the 12 kg block and the surface.) 

 

 

 

12.5 Torque 
 

27. What is the net torque on 

this rod? 

 

(The axis of rotation is at 

the centre of the rod and the 

rod is 4 m long.) 

 

 

 

 

 

28. What is the net torque exerted on this 

wheel?  

 

 

 

 

 

 

 

 

 

29. What is the torque made by the 

160 N force exerted on the 

wrench?  

 

 
www.chegg.com/homework-help/questions-and-

answers/mechanical-engineering-archive-2012-

september-23 
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12.6 Rotational Dynamics 
 

30. This 100 kg beam retained by a cable has a length of 

6 m. What is the angular acceleration of the rod 

immediately after the rope has broken? 

 

 

 

 

 

 

 

31. The pulley shown in the diagram has a 

moment of inertia of 0.5 kgm² and a 

300 mm radius. 

 

a) What is the angular acceleration 

of the pulley? 

b) What will its angular speed be in 

10 seconds (in RPM)? 

 

 

 

32. There is an equilibrium in the situation 

shown in the diagram. What is the 

stretching of the spring? 
 

 

 

 

 

 

 

 

33. With a crank, Gertrude gave an angular 

velocity of 30 rad/s to a grinding wheel. 

She then sharpens her axe by pushing it 

on the grinding wheel with a 160 N 

force. As there is friction between the 

wheel and the axe, the wheel slows 

down. How long can she sharpen her 

axe before the angular speed reaches 

10 rad/s?  

 

 
www.chegg.com/homework-help/questions-and-

answers/physics-archive-2012-november-11 
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34. A torque acts on a wheel initially at rest to give it an angular velocity of 30 rad/s in 

10 s. The torque then disappears and the wheel stops in 120 seconds because of the 

torque due to friction (that is assumed to be constant) opposed to the rotation of the 

wheel. This torque due to friction opposing the rotation was also present when the 

torque was exerted to accelerate the wheel. The moment of inertia of the wheel is 

of 0.5 kgm². 

 

a) What is the torque made by the friction? 

b) What was the torque exerted to give the wheel a 30 rad/s angular speed? 

 

 

 

35. A 4000 kg log having a 50 cm diameter and a 10 m 

length falls from a truck and then rolls along a 40° 

slope. Throughout the descent, the log rolls without 

slipping. 

 

a) What is the acceleration of the log? 

b) What is the minimum value of the coefficient 

of friction required for the log to roll without 

slipping? 

 

 

 

36. A rope wound around a cylinder is tied to a 5 kg 

block, as shown in the diagram. What is the 

acceleration of the block if there is no friction 

between the block and the slope? 

 

 

 

 

 

 

 

37. The pulley shown in this diagram has a moment of inertia 

of 8 kgm². What is the acceleration of the 5 kg mass? 
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38. The pulley shown in this diagram has a moment of inertia 

of 8 kgm². What is the acceleration of each block? 

 

 

 

 

 

 

 

 

 

 

39. A ball was just hit so that it moves at v0 = 3.5 m/s without rolling (which means 

that it is slipping on the surface). However, the friction force between the ball and 

the ground exerts a torque. This torque will increase the angular speed of the ball 

so that the ball will roll without slipping at the end. What will the speed of the ball 

be when it rolls 

without slipping? 

 
 
 
 
 
 
12.7 Work and Power 
 

40. A 0.45 Nm constant torque makes a sphere initially at rest spins. The sphere has a 

mass of 10 kg and a radius of 20 cm. 

 

a) What is the angular displacement of the sphere in 10 seconds? 

b) What is the work done by this torque in 10 seconds? 

c) What is the angular velocity of the sphere after 10 seconds (using the work-

energy theorem)? 

 

 

41. A motor makes a sphere initially at rest spin so that the angular velocity is 

2400 RPM after 30 seconds. The sphere has a radius of 10 cm and a mass of 20 kg. 

What is the average power of the motor?  

 

 

42. The power of the engine of a Kia Optima is 274 horsepower when the engine runs 

at 6000 RPM. What is the torque exerted by the engine then? 
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43. A motor makes this pulley spin with a constant angular 

acceleration in order to lift this block. Initially, the block 

is at rest on the ground. 3 seconds after the motor has 

started lifting the block, the block is 4.5 m from the 

ground and has a speed of 3 m/s. Consider that the pulley 

is a disk. 

 

a) What is the work done by the motor (which 

corresponds to the external work)? 

b) What is the average power of the motor during the 

first 3 seconds? 

c) What is the instantaneous power of the motor 

3 seconds after the motor has started lifting the 

block? 

 

 

12.8 Angular momentum 
 

44. What is the angular momentum of this 300 g rod? 

 

 

 

 

 

 

 

45. A disk falls on a rotating platform such as illustrated in the diagram. What is the 

angular speed at instant 2? 
 

 
user.physics.unc.edu/~rowan/p24site/p24units/unit11/WCHAP11-7.html 
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46. A bullet hits a rod initially at rest that can rotate about an axis passing through its 

centre of mass as shown in the diagram. The bullet then gets lodged in the rod. 

What is the angular velocity of the rod after the collision? 
 

 
 

47. What is the rotational speed of this figure 

skater at the instant 2 (in revolutions per 

seconds)? 

 

 

 
physics.stackexchange.com/questions/81791/conservation-of-

angular-momentum-experiment 

 

 

48. Buzz and Alan are two astronauts floating in space as shown in the diagram. 

Initially, they are 10 m one from each other and they revolve around the centre of 

mass of the two astronauts with 

an angular velocity of 0.8 rad/s. 

Buzz then pulls on the rope so 

that the distance between Buzz 

and Alan is now only 4 m.  

 

 

 

 

 
www.chegg.com/homework-help/questions-and-answers/astronauts-having-mass-m-connected-rope-length-d-having-

negligible-mass-isolated-space-orb-q3272102 

 

a) What is the moment of inertia about the centre of mass before Buzz pulls on 

the rope? (The rope has negligible mass and the astronauts are considered as 

point masses.) 

b) What is the moment of inertia about the centre of mass after Buzz has pulled 

on the rope? (The rope has negligible mass and the astronauts are considered 

as point masses.) 
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c) What is the angular speed of the astronauts when they are 4 m from each 

other? 

d) What is the speed of each astronaut when they are 4 m from each other? 

e) What is the tension of the rope when the two astronauts are 4 m from each 

other? 

f) By how much does the kinetic energy of the system increase when the 

distance between the astronauts changes from 10 m to 4 m? 

g) What is the work done by Buzz to change the distance between the astronauts 

from 10 m to 4 m? 

 

 

49. Marjorie is on the edge of a rotating platform 

which rotates with an angular speed of 1.3 rad/s. 

What will the angular speed of the plate be if she 

moves to the centre of the plate? (Considering 

Marjorie as a point mass.) 

 
www.chegg.com/homework-help/questions-and-answers/student-mass-m-

50-kg-wants-measure-mass-playground-merry- 

round-consists-solid-metal-disk-r-q1047205 

 

 

Challenges 

(Questions more difficult than the exam questions.) 

 

50. This system composed of two 500 g masses, and a spring rotates around its centre 

of mass. The mechanical energy of this 

system is 126 J, and the spring constant is 

1200 N/m. The length of spring when it is 

neither stretched nor compressed is 10 cm. 

(There is no gravitation and consider the two 

masses as point masses.) 

 

a) What is the stretching of the spring? 

b) What is the angular speed?  

 

 

 

51. Three identical solid cylinders are fixed together as 

illustrated on the diagram. When cylinder 3 moves 

downwards, cylinder 1 rolls without slipping on the 

surface and the rope makes cylinder 2 spin (the rope does 

not slip on the cylinder). What will the speed of 

cylinder 3 be immediately before hitting the ground if 

the system is initially at rest? In this problem, neglect the 

mass of the brackets that connect cylinders 1 and 3 to the 

rope. 
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12.1 Rotational Kinematics 
 

1. 7.272 x 10-5 rad/s 

2. a) 50 rad/s     b) 39.79 revolutions      c) 11.21 s 

3. 33.33 revolutions 

4. a) 5.968 revolutions     b) 7.5 rad/s     c) 6 rad/s     d) -1 rad/s²     e) 10 s 

5. a) 12.566 m/s    b) -25.13 rad/s²    c) 78.96 m/s²    d) 50.27 m/s²     e) 93.6 m/s² 

6. 20 kg block: 0.8727 m upwards    30 kg block: 1.745 m downwards 

7. 20 kg block: 2 m/s upwards    30 kg block: 4 m/s downwards 

8. a) 100 rad/s     b) -12.5 rad/s² 

9. a) 1.191 rad/s²     b) 5.934 revolutions 

10. a) 15.28 revolutions     b) 21.635 s 

11. a) 2000 RPM     b) 31.418 m/s 

 

12.2 Rotational Kinetic Energy and Moment of Inertia  
 

12. a) 1080 kgm²     b) 852.73 J 

13. a) 0.0135 kgm²     b) 0.027 J 

14. a) 0.4 kgm²     b) 0.32 kgm² 

15. 19.8 J 

16. a) 0.5 J     b) 6 J     c) 6.5 J 

 

12.3 Moment of Inertia of Extended Object 
 

17. 0.00468 kgm² 

18. 6.3232 kgm² 

19. 1.0102 kgm² 

20. 4.423 x 10-4 kgm² 

 

12.4 Mechanical Energy Conservation 

 

21. 12.36 m/s 

22. 2.025 m/s 

23. 58.18 m/s 

24. 8.854 m/s 

25. 4.541 rad/s 

26. 2.952 m/s 

 

12.5 Torque 

 

27. 35.586 Nm counterclockwise  

28. 4.85 Nm clockwise 

29. 26.4 Nm counterclockwise 
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12.6 Rotational Dynamics 

 

30. 1.225 rad/s² 

31. a) 12 rad/s² counterclockwise 

b) 1646 RPM counterclockwise  

32. 2.352 m 

33. 1.823 s 

34. a) 0.125 Nm opposed to the rotation  b) 1.625 Nm same direction as the rotation 

35. a) 4.2 m/s²     b) 0.2797 

36. 2.45 m/s² 

37. 1.378 m/s² 

38. 20 kg block: 1.463 m/s² upwards     30 kg block: 2.925 m/s² downwards 

39. 2.5 m/s 

 

12.7 Work and Power 
 

40. a) 140.625 rad      b) 63.28 J     c) 28.125 rad/s 

41. 84.22 W 

42. 325.32 Nm 

43. a) 265.5 J     b) 88.5 W     c) 177 W 

 

12.8 Angular Momentum 

 

44. 1.2566 kgm²/s 

45. 2.98 rad/s 

46. 4.938 rad/s 

47. 8.75 revolutions/s 

48. a) 4800 kgm²     b) 768 kgm²     c) 5 rad/s     d) Buzz: 8 m/s     Alan: 12 m/s 

e) 4800 N     f) 8064 J     g) 8064 J 

49. 2.08 rad/s 

 

Challenges 

 

50. a) 30 cm     b) 60 rad/s 

51. 3.429 m/s 

 

 

 


