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INTRODUCTION 
 

DATA ANALYSIS 
 
 

Measurement and Uncertainty 
 
Measurements are never infinitely accurate; an uncertainty on the measurement must be 
assessed for each measurement. Its value depends on the particular situation. The 
uncertainty of a measurement x is denoted ∆x. The measurement is then written as 
follows: 

� ± Δ� 
 

This means that the exact value of the measurement is somewhere between � − Δ� and 
� + Δ�. For example, if a measurement is 4.02 ± 0.34, this means that that the true value 
is surely somewhere between 3.68 and 4.36. 
 
This uncertainty can come from two sources. These are: 
 
1. Measuring device: Measuring devices do not have infinite precision.  
 
2. Other factors: a) Objects or quantities to be measured may be 

irregular, ill-defined or vary over time. 
 

b) The way a device is used. The conditions in which 
the device is used may prevent us from taking 
advantage of the full precision of the latter. 

 
Therefore, the uncertainty is 
 

device othersx x x∆ = ∆ + ∆  
 
 
Evaluation of the Uncertainty due to the Measuring Device 
 
a) The uncertainty is given by the manufacturer of the device.  
 
 In this case, this uncertainty will be stated in the lab notebook. There are three 
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ways for the manufacturer to indicate the uncertainty. 
 

1. The uncertainty is simply given. 
 
This is the easiest case since the value of uncertainty is directly given. For 
example, the scales used in physics have an uncertainty of 0.1 g. 

 
 

2. The relative uncertainty is given (percentage). 
 

For example, if the measurement is 35.78 g and the uncertainty of the 
device is 3%, then the uncertainty is 0.03 ∙ 35.78 g = 1.073 g. 

 
 

3. The uncertainty on the last figure displayed by the device is given. 
 

This can only happen with devices having a digital display. In this case, 
the manufacturer indicates the uncertainty on the last digit displayed by 
the unit. However, the wording is highly abbreviated. Thus, if there is an 
uncertainty of 2 on the last displayed number, the uncertainty is simply 
given as “± 2 digits”. Here are some examples of the values of the 
uncertainty in this case.  
 
 6.654 ± 1 digit gives  6.654 ± 0.001 
 13.45 ± 3 digits gives  13.45 ± 0.03 
 2.8324 ± 7 digits gives  2.8324 ± 0.0007 
 63.67 ± 10 digits gives  63.67 ± 0.10 

 
Sometimes, the uncertainty is the sum of many of these cases. For example, let’s 
suppose that the measurement on an ammeter is 100.6 mA. If the manufacturer of 
the ammeter indicates that the uncertainty of the device is ± 0.3% + 1 mA + 2 digits, 
then the uncertainty is the sum of the three following elements: 
 
  0.3% uncertainty:     0.3 mA 
  1 mA uncertainty:     1    mA 
  2 digits uncertainty:     0.2 mA 
 
  Total uncertainty:     1.5 mA 

 
 
b) The uncertainty is not given by the manufacturer of the device. 
 

1- Without a digital display: It is then assumed that the uncertainty due to 
the instrument is equal to half of the smallest graduation of the unit. The 
uncertainty of a ruler graduated at each millimetre is, therefore, 0.5 mm. 
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2- With a digital display: It is then assumed that the uncertainty is ±1 on the 
last displayed digit. 

 
 
Evaluation of the Uncertainty Due to Other Factors 
 
The value of this uncertainty depends on the situation. For example, in an optics 
laboratory, the position of the image of an object formed by a converging lens will be 
measured. To find the position of the image, the position where the image on a screen is 
sharp must be found. However, you’ll soon realize that the image remains sharp even if 
you move the screen a little. The image begins to be sharp at a certain position (xmin) and 
ceases to be sharp at another position (xmax). The uncertainty, in this case, does not only 
come from the measuring device but also from the fact that there is a range of values for 
which the image is sharp. The measurement of time with a stopwatch is another example. 
As reflexes are not instantaneous, there is an additional uncertainty to the time measured. 
This additional uncertainty is approximately 0.2 s, which is much greater than the 
uncertainty of the stopwatch (0.01 s).  
 
To properly evaluate the magnitude of the uncertainty in these cases, you must ask 
yourselves the following question: what are the extreme values that can represent with 
sufficient certainty the magnitude of the measured quantity?  
 
The largest possible value is noted xmax. Here is an example to illustrate. Imagine that you 
measure the position of an image made by a lens. Moving the screen away from the 
screen, you estimate that the image ceases to be sharp when the screen is 40.2 cm from 
the lens. This is the maximum value of the position of the image. You are absolutely sure 
that the value cannot be larger than this value. 
 
The smallest possible value is noted xmin. Using our example, you now move the screen 
towards the lens to find the minimum distance. You then estimate that the image ceases 
to be sharp when the screen is 36.4 cm from the lens. This is the minimum value of the 
position of the image. You are absolutely sure that the value cannot be smaller than this 
value. 
 
Now, you know that x is between xmax and xmin. For the example of the image made by a 
lens, you know that the image is between 36.4 cm to 40.2 cm from the lens. Thus, a range 
of value is obtained. 

 
 
This range of value can be represented with x and ∆x. 
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As the x in midway between xmax and xmin, it is the average of two values. 
 

max min

2

x x
x

+
=  

 
The uncertainty is equal to half of the gap between xmax and xmin. Thus, it is  
 

max min
others

2

x x
x

−
∆ =  

 
Don’t forget that this uncertainty is only the uncertainty due to other factors. The 
uncertainty to the measuring device must be added to obtain the total uncertainty. 
 
Example: During the measurement of a length L with a ruler (uncertainty of 1 mm), it 

is believed that the value of this length is certainly not larger than 12.8 cm 
and is certainly not smaller than 12.4 cm. Then 
 

12.8 12.4

2

12.6

cm cm
L

cm

+
=

=

 

 

and 
 

12.8 12.4

2

0.2

cm cm
L

cm

−
∆ =

=

 

 

Thus, the total uncertainty is 
 

device others

0.1 0.2

0.3

L L L

cm cm

cm

∆ = ∆ + ∆

= +

=

 

 

Therefore, the result is 
 

L = 12.6 ± 0.3 cm 
 

This means that the maximum possible value of the measurement is 
12.6 cm + 0.3 cm = 12.9 cm and that the minimum possible value of the 
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length is 12.6 cm - 0.3 cm = 12.3 cm. 
 
 

How to Correctly Write a Measurement and its Uncertainty 
 
The measure and its uncertainty must be written correctly. In order to do that, these rules 
must be followed: 
 
1) The uncertainty must have only one or two significant digits. 
 

Perhaps you are unfamiliar with the notion of significant digits, or maybe it is lost in 
your childhood memories. So here is a quick review of what a significant digit is. 
 
a) All digits different from 0 are significant. 
b) All 0 located between digits different from 0 are significant. 
c) All 0 following a digit different from 0 are significant. 
d) All 0 which are not preceded by a digit different from 0 are not significant because 

they only serve to locate the decimal point. 
e) One or more consecutive 0 placed at the end of a whole number are generally not 

significant. 
 
 
2) The measurement must have the same precision as the uncertainty. 
 

If, according to the previous rule, the uncertainty was rounded to the nearest 
hundredth, the measurement must also be rounded to the nearest hundredth. If the 
uncertainty was rounded to the nearest thousandth, the measurement must also be 
rounded to the nearest thousandth. Thus, the measurement or the result of a 
calculation cannot be rounded before the uncertainty is known because the precision 
is determined by the uncertainty. 

 
Here are some examples of the application of these rules. 
 
Calculations gave T = 18.4278 and ∆T = 1.654. 
 

First, we must take care of the uncertainty which has 4 significant digits. As only 2 
significant digits must remain, the uncertainty is rounded to ∆T = 1.7. T must then be 
rounded to the same precision as the uncertainty. As the uncertainty was rounded to 
the nearest tenth to get two digits significant, the value of T must also be rounded to 
the nearest tenth to obtain T = 18.4. The answer is, therefore, T = 18.4 ± 1.7. 

 
Calculations gave p = 0.084056 and ∆p = 0.000603393. 
 

As always, the uncertainty is dealt with first. To reduce the number of significant digits 
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to 2 for the uncertainty, it must be rounded to ∆p = 0.00060. Note that the 0 after the 
6 was kept because it is a significant digit (rule c). Then, as the uncertainty has been 
rounded to the nearest hundred thousandths (5th digit after the decimal point), the 
value from p must be rounded to the nearest hundred thousandths to obtain 
p = 0.08406. The answer is thus p = 0.08406 ± 0.00060 or ( ) 4840.6 6.0 10p −= ± × . 

 
Calculations gave v = 285,759,546 and ∆v = 67,749.  
 

If the uncertainty is rounded to have two significant figures, ∆v = 68,000 is obtained. 
Note that the three 0 in 68,000 are not significant (rule e). As the uncertainty has been 
rounded to the nearest thousands, the value of v must also be rounded to the nearest 
thousands to get v = 285,760,000. The final value can then be written as 
v = 285,760,000 ± 68,000 or ( ) 428,576.0 6.8 10v = ± × .  

 
 
These examples show that the uncertainty has only two significant digits while the 
measurement may have more. In general, the experiment is considered to be more 
accurate if the measurement has a lot of significant digits. Thus, in the examples, the 
measurement of T is not very accurate since T has only 3 significant digits. On the other 
hand, the measurement of v is much more accurate since v still has 6 significant digits. It 
will be difficult to obtain high-precision results in the experiments performed in the college 
but it can be achieved in major scientific laboratories (are you surprised?). At the moment, 
one of the most accurate scientific experiments is the measurement of the anomalous 
magnetic moment of the electron. The measured value is 
 

( ) 1311,596,521,807.6 2.7 10−± ×  

 
This experiment is remarkably accurate since the measurement has 12 significant digits 
(which, by the way, all agree with the theoretical predictions of quantum electrodynamics). 
 
Here is another example that will illustrate the subtlety of the rules: assume that a 
calculation gave R = 0.086 and ∆R = 3.462. 
 

If the uncertainty is rounded to keep only two significant digits, ∆R = 3.5 is obtained. 
As it was rounded to the nearest tenth, R must also be rounded to the nearest tenth 
to get R = 0.1. The result is then R = 0.1 ± 3.5. It may seem surprising to have a value 
of R smaller than its uncertainty, but this can sometimes happen. This will generally 
happen if the theoretical value of R is 0. 

 
Finally, what happens if the result of a calculation is F = 18.4 and ∆F = 0.0063? 
 

In this case, the uncertainty already has 2 significant digits. As it is rounded to the 
nearest ten thousandth, F must also be rounded to the nearest ten thousandth. 
However, this is impossible to do since the value of F stops at the tenth. In this case, 
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the error probably comes from the fact that the value of F was rounded right after 
calculating it and it was then decided to round it to the nearest tenth. To remedy this 
situation, the value of F must be recalculated to know the missing digits in order to be 
able to correctly round it to the nearest ten thousandth. If the calculation is redone 
and you realize that the value is exactly 18.4, then this means that all the other digits 
of F are zeros. In this case, the value of F is F = 18.4000 ± 0.0063. 

 

Exercises 
 
Write those measurements correctly 
 
1 - 96.6745 ± 3.7006                   ±         . 
 
2 - 135.8 ± 5.943                    ±         . 
 
3 - 0.00067 ± 0.022                    ±         . 
 
4 - 295,450 ± 22,677                   ±         . 
 
5 - 5603 ± 113                    ±         . 
 
6 - 8.9875 x 10-2 ± 0.00045                   ±         . 
 
 
For each of these measurements, specify the magnitude of the measurement and its 
uncertainty 
 
1 - The width of this page                      ±         . 
 
2 - The position of the image                     ±         . 
 
3 - The mass                        ±         . 
 
4 - The period of oscillation of the mass                    ±         . 
 
5 - The room temperature                       ±         . 

  
6 - The current in the circuit                     ±         . 

  
7 - The resistance                       ±         . 
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Uncertainty Calculations With the Method of Extreme Values 
 
Certain quantities cannot be directly measured. For example, the average speed between 
two points of an object in a rectilinear motion cannot be directly measured. To find it, the 
distance between these two points must be measured, and then the time it takes for the 
object to cover that distance is measured. The average speed is simply the ratio of these 
two values. Then, what is the uncertainty of this calculated speed? 
 

 
Suppose that y must be calculated from x with a 
function (like y = x²). This means that 
 

y = f (x) 
 

Suppose that the graph of this function is shown in 
the figure. If the variable x has a certain value 
(written as X), the function gives the value of the 
variable y (written as Y). 
 
 
 

 
 
If ∆X is the uncertainty of X, the uncertainty of Y 
can be determined by evaluating the extreme 
values of Y from the extreme values of X. The 
second figure shows what this means. The value 
of the function is calculated for X + ∆X. The 
maximum value of Y, which is Y + ∆Y, is then 
obtained. The value of the function for X - ∆X is 
then calculated to obtain the minimum value of Y, 
which is Y - ∆Y. These two calculations give the 
extreme values of Y. The maximum value of X 
does not necessarily correspond to the maximum 
value of Y. If the slope is negative, the maximum 
value of X corresponds instead to the minimum value of Y. 
 
From the extreme values of Y, the value of Y and its uncertainty can be calculated. This 
is the method of extreme values. 
 
Let’s take an example to illustrate this method. Suppose that a stone is dropped from the 
top of a cliff, and it took 1.5 ± 0.1 s for the stone to reach the bottom of the cliff. The height 
of the cliff can then be found with the following formula. 
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21

2
h gt=  

 

If the fall lasted 1.5 s, then the height is 
 

( )
2

²

1
9.8 1.5 11.025

2
m
s

h s m= ⋅ ⋅ =  

 

However, as there is an uncertainty on the time, then there must be an uncertainty on the 
height of the cliff obtained from this calculation. That extreme values of the height can be 
found from the extreme values of the time. As the maximum time is 1.6 sec (1.5 s + 0.1 s), 
the maximum height is 
 

( )
2

²

1
9.8 1.6 12.544

2
m
s

h s m= ⋅ ⋅ =  

 

As the minimum time is 1.4 s (1.5 s – 0.1s), the minimum height is 
 

( )
2

²

1
9.8 1.4 9.604

2
m
s

h s m= ⋅ ⋅ =  

 

The height of the cliff is therefore between 9.604 m and 12.544 m. The value of height is, 
therefore, 
 

12.544 9.604
11.074

2

m m
h m

+
= =  

 

and its uncertainty is 
 

12.544 9.604
1.47

2

m m
h m

−
∆ = =  

 

This gives h = 11.07 m ± 1.47 m. If it is written with the correct number of significant digits, 
the final result is h = 11.1 m ± 1.5 m. 
 
 
A few simple rules for uncertainty calculation 
 
Using the method of extreme values, some simple rules will be obtained for the addition, 
subtraction, and multiplication. 
 
 
Addition z = x + y 
 
The maximum value of an addition is obtained by adding up the maximum values of each 
variable. 
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( ) ( )
max max maxz x y

x x y y

= +

= + ∆ + + ∆
 

 

The minimum value of an addition is obtained by summing the minimum values of each 
variable. 
 

( ) ( )
min min minz x y

x x y y

= +

= − ∆ + − ∆
 

 

Thus, the uncertainty is 
 

( ) ( ) ( ) ( )

max min

2

2

z z
z

x x y y x x y y

−
∆ =

+ ∆ + + ∆ − − ∆ + − ∆      =

 

 

Simplifying, the result is 
 
Uncertainty of the addition z = x + y 
 

z x y∆ = ∆ + ∆  
 
 
Subtraction z = x – y 
 
The maximum value of the subtraction x - y is obtained by subtracting the minimum value 
of y to the maximum value of x. 
 

( ) ( )
max max minz x y

x x y y

= −

= + ∆ − − ∆
 

 

The minimum value of the subtraction x – y is obtained by subtracting the maximum value 
of y to the minimum value of x. 
 

( ) ( )
min min maxz x y

x x y y

= −

= − ∆ − + ∆
 

 

Thus, the uncertainty is 
 

( ) ( ) ( ) ( )

max min

2

2

z z
z

x x y y x x y y

−
∆ =

+ ∆ − − ∆ − − ∆ − + ∆      =

 

 

Simplifying, the result is 
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Uncertainty of the subtraction z = x – y 
 

z x y∆ = ∆ + ∆  
 
 
Multiplication z = xy 
 
The maximum value of a multiplication is obtained by multiplying the maximum values of 
each variable. 
 

( )( )
max max maxz x y

x x y y

=

= + ∆ + ∆
 

 

The minimum value of a multiplication is obtained by multiplying the minimum values of 
each variable. 
 

( ) ( )
min min minz x y

x x y y

=

= − ∆ − ∆
 

 

Thus, the uncertainty is 
 

( ) ( ) ( ) ( )

max min

2

2

z z
z

x x y y x x y y

−
∆ =

+ ∆ + ∆ − − ∆ − ∆      =

 

 

Simplifying, the result is 
 
Uncertainty of the multiplication z = x y 
 

z x y y x∆ = ∆ + ∆  
 
We could go on like this to obtain other formulas. However, all these results can be 
obtained much more easily with calculus. 
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Uncertainty Calculation With Calculus 

 
Here, an approximation of the method of extreme 
values will be used to calculate the uncertainty. For 
this approximation, a tangent line to the function at 
point X is used to calculate the extreme values 
instead of the function. The figure on the right 
shows this. If the uncertainties are small, the 
values obtained from the tangent line are almost 
identical to the values obtained from the function. 
But be warned; if the uncertainties are too large or 
if the function varies very quickly, the calculation of 
uncertainties with the tangent line will be not very 
accurate.  
 
The slope at point X must be calculated first. Fortunately, a very powerful method can be 
used to calculate a slope: the derivative. With the function y = f (x), the slope of the function 
is given by 
 

dy
slope

dx
=  

 
However, the slope of the tangent line is also given by 
 

y
slope

x

∆
=

∆
 

 
As these two previous equations must be equal, we have 
 

y dy

x dx

∆
=

∆
 

 
If this equation is solved for ∆y, an approximation for the uncertainty is obtained. 
 

dy
y x

dx
∆ = ∆  

 
The absolute value of the derivative must be taken to have a positive uncertainty. A 
negative uncertainty would change the “plus or minus” sign in front of the uncertainty to 
a “minus or plus” sign, which doesn’t make any difference. 
 
Let’s revisit our free-fall example to see if the approximation is good. We already know 
that the height of the cliff is 11.025 m if the height is calculated with the free-fall time 
(1.5 s). Now, the uncertainty of this result will be calculated with the approximation. Here 
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we do not have the variables x and y, but rather h and t. However, the principle is the 
same. To obtain the uncertainty of a variable (here h), just derive the function giving this 
variable (here ½gt²) and multiply it by the known uncertainty (here ∆t). Therefore, the 
uncertainty is 
 

( )21
2d gt

h t
dt

gt t

∆ = ∆

= ∆

 

 
It only remains to calculate the value of this uncertainty to obtain 
 

²9.8 1.5 0.1

1.47

m
s

h s s

m

∆ = ⋅ ⋅

=
 

 

This uncertainty is very similar to the one obtained by calculating the uncertainty with the 
method of extreme values (1.47 m). 
 
The height of the cliff is therefore 11.025 m ± 1.47 m according to this method. Written 
with the correct number of significant digits, the height is 11.0 m ± 1,5 m. 
 
In summary, the calculation is first made without worrying about the uncertainty. Then, 
the uncertainty is calculated with the derivative. 
 
 
Examples   Uncertainty Calculation for Some Functions 
 
a)  y = x4  x = 3.0 ± 0.1 
 

y = 34 = 81 
 

∆y = 4 x3 ∆x = 4 . 33 . 0.1 = 10.8 
 

Therefore, y = 81 ± 11 
 

 
 
b) R = et   t = 3.6 ± 0.1 
 

R = e3.6 = 36.598 
 

∆R = et ∆t = e3.6 . 0.1 = 3.66 
 

Therefore, R = 36.6 ± 3.7 
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c) S = ln N  N = 34 ± 1 
 

S = ln 34 = 3.5264   
 

∆S =
1

N
N

⋅ ∆ = 
1

1
34

⋅ = 0.02941 

 

Therefore, S = 3.526 ± 0.029 
 
Note that in calculations involving trigonometric functions, the uncertainties of the angles 
must always be in radians and not in degrees. All the other angles can be in degrees but 
the uncertainty of the angle in calculations involving trigonometric function must be in 
radians. 
 
Example     
 
 p = sin w  w = 43.0 ± 0.5° 
 

p = sin 43° = 0.68199 
 

∆p = |cos w| ∆w = |cos 43°| .  0.00873 rad = 0.0063 
 
     Therefore, p = 0.6820 ± 0.0063 
 
If an angle is calculated from an inverse trigonometric function, the uncertainty obtained 
is in radians. 
 
Example     
 
 θ = arctan r  r = 2.045 ± 0.038 
 

θ = arctan 2.045 = 63.9415° 
 

2 2

1 1
0.038 0.00733

1 1 2.045
r rad

r
θ∆ = ∆ = ⋅ =

+ +
 

 
This value can be changed in degrees to obtain 0.42° 

 
     Therefore, θ = 63.94° ± 0.42° 
 

Exercises 
 
 a) Calculate  35y x=    x = 2.23 ± 0.06 
 
 b) Calculate  4 coss v=    v = 35.3° ± 0.5° 
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Answer 
 

a) y = 55.4 ± 4.5 
 
b) s = 3.264 ± 0.020 
 

 

Uncertainty Calculations and Multivariable Calculus 
 
Now suppose that z must be calculated from two measured values x and y. This means 
that  
 

z = f (x,y) 
 

It can be shown that the uncertainty is then given by the following equation. 
 

z z
z x y

x y

∂ ∂
∆ = ∆ + ∆

∂ ∂
 

 
where the derivatives are partial 
derivatives (see box). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To illustrate how to use this formula, 
let’s revisit our example of the stone 
thrown from the top of a cliff by 
adding an uncertainty on g. 
 

g = 9.81 m/s² ± 0.01 m/s² 
 
The height of the cliff is then 

Partial Derivatives 

 

The partial derivative 
f

x

∂

∂
 is the derivative of f 

with respect to x only. This means that y is 
considered as being a constant in the function. 
For example, if z = x² y³ + y², then 
 

32
f

xy
x

∂
=

∂
 

 

The partial derivative 
f

x

∂

∂
 is the derivative of f 

with respect to y only. This means that x is 
considered as being a constant in the function. 
For example, if z = x² y³ + y², then 
 

2 23 2
f

x y y
y

∂
= +

∂
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( )
22

²

1 1
9.81 1.5 11.03625

2 2
m
s

h gt s m= = ⋅ ⋅ =  

 

The uncertainty of the height of the cliff will be larger than before since the two variables 
have uncertainties now. To obtain the uncertainty, the formula of the height must be 
derived with respect to each variable having an uncertainty. The total uncertainty of the 
height is then the sum of the derivatives multiplied by the uncertainties. Here, the two 
variables are g and t and the uncertainty of h is, therefore, 
 

h h
h t g

t g

∂ ∂
∆ = ∆ + ∆

∂ ∂
 

 

The partial derivative of the function h with respect to t is 
 

h
gt

t

∂
=

∂
 

 

and the partial derivative of the function h with respect to g is 
 

21

2

h
t

g

∂
=

∂
 

 

Therefore, the uncertainty of the height of the cliff is 
 

21

2
h gt t t g∆ = ∆ + ∆  

 

It only remains to put the numbers in this equation to obtain the uncertainty of h. 
 

( )
2

² ²

1
9.81 1.5 0.1 1.5 0.01

2

1.4715 0.01125

1.48275

m m
s s

h s s s

m m

m

∆ = ⋅ ⋅ + ⋅ ⋅

= +

=

 

 

The height is then  
 

h = 11.0 ± 1.5 m 
 
 
The uncertainty of the height has not increased much by adding an uncertainty of 
0.01 m/s² to g. The calculation also indicated that uncertainty of the height due to the 
uncertainty of g is 0.01125 m while the uncertainty due to the uncertainty of t is 1.47 m. It 
is quite clear that if we want to improve this experiment and reduce the uncertainty of the 
height, nothing much is gained by reducing the uncertainty of g. It would be better to focus 
on ways to improve the time measurement. 
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Examples   Uncertainty Calculation on Multivariable Functions 
 

a)  
x

z
y

=    x = 3.04 ± 0.24  y = 5.78 ± 0.11 

  
 The function is 
 

3.04
0.525895

5.78
z = =  

 

 The uncertainty is given by 
 

z z
z x y

x y

∂ ∂
∆ = ∆ + ∆

∂ ∂
 

 

 As 
 

1z

x y

∂
=

∂
 

 

2

z x

y y

∂ −
=

∂
 

 

the uncertainty is 
 

2

2

1

1 3.04
0.24 0.11

5.78 5.78

0.0415 0.0100

0.0515

x
z x y

y y

−
∆ = ∆ + ∆

−
= ⋅ + ⋅

= +

=

 

 

Here, the uncertainty of z originates mainly from the uncertainty of x since the first 
term is about 4 times larger than the second. 

  The final result is z = 0.526 ± 0.052 

 
b) 

xy
w z

z
= −   x = 22.3 ± 0.2  y = 4.6 ± 0.1  z = 5.1 ± 0.3 

 
The function is 
 

22.3 4.6
5.1 15.0137

5.1
w

⋅
= − =  

 

The previous ideas can easily be generalized to conclude that, with three variables, 
the uncertainty is 
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w w w
w x y z

x y z

∂ ∂ ∂
∆ = ∆ + ∆ + ∆

∂ ∂ ∂
 

 

 As 
 

w y

x z

∂
=

∂
 

 

w x

y z

∂
=

∂
 

 

2
1

w xy

z z

∂ −
= −

∂
 

 

the uncertainty is 
 

2

2

1

4.6 22.3 22.3 4.6
0.2 0.1 1 0.3

5.1 5.1 5.1

0.1804 0.4373 1.4832

2.1009

y x xy
w x y z

z z z

−
∆ = ∆ + ∆ + − ∆

− ⋅
= ⋅ + ⋅ + − ⋅

= + +

=

 

 

These results indicate that the uncertainty of w comes mainly from the uncertainty 
of z. 

 
  The final result is w = 15.0 ± 2.1 
 
 

c) 
3

2 2

x
I y

y x
= +

+
  x = 3.04 ± 0.07  y = 5.46 ± 0.05 

 
 The function is 
 

3

2 2

3.04
5.46 6.17939

5.46 3.04
I = + =

+
 

 

 The uncertainty is 
 

I I
I x y

x y

∂ ∂
∆ = ∆ + ∆

∂ ∂
 

 
The result is 
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( ) ( )

( ) ( )

( )

( ) ( )

2 2 2 3 3

2 22 2 2 2

2 2 2 3 3

2 22 2 2 2

3 2
2 1

3 3.04 3.04 5.46 3.04 2 3.04 3.04
0.07 2 5.46 1 0.05

3.04 5.46 3.04 5.46

0.041853 0.03994

0.081793

x x y x x x
I x y y

x y x y

+ −
∆ = ∆ + − + ∆

+ +

⋅ ⋅ + − ⋅ ⋅
= ⋅ + − ⋅ ⋅ + ⋅

+ +

= +

=

 

 
  Therefore, 6,179 0,082I = ± . 
 

Here, the uncertainty comes almost equally from the uncertainty of each variable. 

 
d)  arcsin

a
 = 

b
θ   a = 0.345 ± 0.012  b = 0.872 ± 0.022 

 
  The value of θ  is 
 

0.345
arcsin arcsin 23.30603

0.872

a

b
θ = = = °  

 

The uncertainty is 
 

= a b
a b

θ θ
θ

∂ ∂
∆ ∆ + ∆

∂ ∂
 

   

  Which is 

22 2

1 1 1

1 1

a
 a b

b ba a

b b

θ∆ = ∆ + ∆

   
− −   
   

 

 

  Therefore, 
 

0.014984 0.010869

0.025853

1.48

 = rad rad

rad

θ∆ +

=

= °

 

 

  The final result is then θ = 23.3° ± 1.5 °. 
 

Do not forget that the uncertainty of an angle is always in radians when the angle 
is calculated with an inverse trigonometric function. 
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The following example shows that the equation must not be necessarily solved for the 
variable for which the uncertainty is sought. The uncertainty can be calculated by deriving 
implicitly. For this to work, the variable for which the uncertainty is sought must be the 
only variable on one side of the equation and all the other variables must be on the other 
side of the equation. 
 

e)  sin
a

 =
b

θ   a = 0.345 ± 0.012  b = 0.872 ± 0.022 

     Those are the same values as in the previous example. 
  
  The value of θ  is 

0.345
arcsin arcsin 23.30603

0.872

a

b
θ = = = °  

 

  To obtain the uncertainty, each side of the equation is derived.  
 

sin ( / ) ( / )a b a b
= a b

a b

θ
θ

θ

∂ ∂ ∂
∆ ∆ + ∆

∂ ∂ ∂
 

   

  This gives 

2

1
cos

a
  a b

b b
θ θ∆ = ∆ + ∆  

 

  The uncertainty is thus 
 

2

2

1

cos

1 0.345
0.012 0,022

0.872 0.872
cos 23.30603

0.025853 rad

a
a b

b b
 = 

 
θ

θ

∆ + ∆

∆

⋅ + ⋅
=

°

=

 

 

  The final result is, therefore, θ = 23.3° ± 1.5° 
 
This method can greatly simplify some uncertainty calculations. For example, the 
derivative of an inverse sine function (which few remember) was avoided in this last 
example. The derivative of a sine function had to be made instead (for which the derivative 
is well known to all...). 
 
 
A few simple rules for uncertainty calculation 
 
With this method, it can be shown that the simple rules for the addition, subtraction and 
multiplication were correct. 
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Addition z = x + y 
 
The uncertainty is 

1 0 0 1

z z
z x y

x y

x y

x y

∂ ∂
∆ = ∆ + ∆

∂ ∂

= + ∆ + + ∆

= ∆ + ∆

 

 
Subtraction z = x – y 
 
The uncertainty is 

1 0 0 1

z z
z x y

x y

x y

x y

∂ ∂
∆ = ∆ + ∆

∂ ∂

= + ∆ + − ∆

= ∆ + ∆

 

 
Multiplication z = xy 
 
The uncertainty is 

z z
z x y

x y

y x x y

y x x y

∂ ∂
∆ = ∆ + ∆

∂ ∂

= ∆ + ∆

= ∆ + ∆

 

 

Exercises 
 
Calculate z and ∆z if x and y are 
 

x = 12.70 ± 0.10  y = 6.30 ± 0.20 
 

a) z = x + y    b) z = x – y 
 

c) z = xy    d) 
x

z
y

=  

 

e) z = 4xy    f) 
1 1 1

z x y
= +  

 
g) ( )/102 xy

z eπ=    h) z = y ln x 
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i) 
x y

z
x

+
=     j) z x

e
y

=  

 

k) z = x²y + x³    l) tan
x

z
y

=  

 
Calculate z and ∆z if θ and A are 
 

 θ = 34.6o ± 1.2o  A = 23.47 ± 0.53 
 

m) z = A cos θ    n) z = A sin² θ  + A cos² θ  
 
 
Answers (with an uncertainty having 2 significant digits) 
 
a) 19.00 ± 0.30   b) 6.40 ± 0.30   c) 80.0 ± 3.2 
 
d) 2.016 ± 0.080   e) 320 ± 13   f) 4.21 ± 0.10 
 
g) 18,700 ± 5,900   h) 16.01 ± 0.56  i) 1.496 ± 0.020 
 
j) 0.351 ± 0.020   k) 3065 ± 97   l) 63.62 ± 0.90° 
 
m) 19.32 ± 0.72   n) 23.47 ± 0.53 
 
 

Statistical Methods 
 
In what was done here, it was assumed that 
the result of a measurement is between 
x – ∆x and x + ∆x and that all the values in 
this range are equally likely. On the other 
hand, there are sometimes reasons to 
believe that in the values in the centre of the 
interval are more probable than those near 
the edges of the interval. In this case, it is 
always assumed that the probability for the 
different values on the interval is given by 
this graph (called a Gaussian distribution). 
 

 

app3998.tthsrv63.live/7455130083/?u=n6awkwf&o=acb83nz&t=boneandvascularresearch.info&cid=096c29bc-5882-4b2d-994f-f7612205e801&f=1 
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This distribution is described with a standard deviation σ. This distribution means that the 
value has a 68% chance of being between x – σ and x + σ, 95% chance of being between 
x – 2σ and x + 2σ, and a 99.7% chance of being between x – 3σ and x + 3σ. The 
uncertainty used will, therefore, depend on the level of confidence wanted. Very often, 
the uncertainty is equal to 2σ for a 95% confidence level. 
 
Then, these probabilities change completely how to calculate uncertainties. So, here’s 
what is obtained (without a proof that exceeds the level of these notes) for a function of 
two variables. 

22
z z

z x y
x y

 ∂ ∂ 
∆ = ∆ + ∆  

∂ ∂   
 

 
Here’s what this formula gives for basic operations. 
 
Addition z = x + y or subtraction z = x – y 
 

( ) ( )
2 2

z x y∆ = ∆ + ∆  

 
Multiplication z = xy or division z = x/y 
 

22
z x y

z x y

 ∆ ∆ ∆ 
= +   

   
 

 

You probably recognize the uncertainty equations used in chemistry. 
 
 

Graphical Data Analysis 
 
Sometimes, the parameters of an equation will be found with a graph. For example, the 
formula giving the position versus time in a uniform rectilinear motion is 
 

0y y vt= +  
 

where v is the velocity and y
0
 is the position at t = 0. 

 
To determine the speed, the position of the object at different instants can be measured 
to plot a graph of the position versus time. Then, the slope of this graph is the speed of 
the object. 
 
 
The graph 
 
Suppose that the measurements of the position are 
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TABLE 1   Position as a Function of Time 
 

Time (t) Position (x) 

s m 

± 0.1 ± 0.1 

1.0 1.0 

2.0 1.4 

3.0 2.1 

4.0 2.5 

5.0 3.1 

6.0 3.5 

7.0 3.9 

8.0 4.5 

9.0 5.0 

10.0 5.6 

 
The graph corresponding to these data is on the next page (Figure 1). We’ll see later how 
to create such a graphic with Excel. 

 
Some explanations are needed here. 
 

0

1

2

3

4

5

6

0 2 4 6 8 10 12

x (m)

t (s)

Graph 1: position as a function of time

y = b + m x
m = (5,07 ± 0,19) × 10-1 m/s
b = (4,7 ± 1,0) × 10-1 m
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Points Representation 
 
As the values of the points on the graph have uncertainties, these uncertainties must be 
shown on the graph. There are three ways to represent these uncertainties. 
 

 
 
In the first two cases, the uncertainties are represented by lines, called uncertainty bars, 
whose length, from the central point, is equal to the uncertainty. The uncertainty bars are, 
however, arranged in different ways in the first two figures. The third way is to draw a 
rectangle of uncertainty whose borders are located at a distance ∆x from the centre point 
in the x-direction and at a distance ∆y from the centre point in the y-direction. 

 
In all cases, the uncertainty bars and the rectangle of uncertainty delimit a rectangular 
region where the real value of the measurement can be found, taking into account the 
uncertainties. In the first two cases, the limits of the rectangular area are more subtle but 
they are identical to the rectangle of uncertainty. It takes just a little more imagination to 
see these limits. 
 
 
Determination of the Equation of the Line 
 
If the phenomenon is linear, then there must be a straight line which touches all the 
experimental points. However, since the experimental data are not simple points but 
rather a set of rectangles of uncertainty, several straight lines can possibly pass through 
all the rectangles of uncertainty. All the lines passing through all the rectangles of 
uncertainty are possible lines according to the experimental results. However, there is no 
need to plot all of these lines; only two will do. These two lines represent the two extreme 
cases: the line having the maximum slope and the line having the minimum slope. All the 
other lines have a slope whose value lies between these two limits. 
 
   Maximum slope: For the maximum slope, the line passing through all the rectangles 

of uncertainty having the largest possible slope is plotted 
 
   Minimum slope: For the minimum slope, the line passing through all the rectangles of 

uncertainty having the smallest possible slope is plotted. 
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These are the two lines plotted on the graph. 
 
Excel will calculate the values of maximum and minimum slopes for you. (If you had 
plotted this graph by hand, you would just take two points on each of these lines to 
calculate the slopes.) In our example, the values are  
 

max 0.5258 m
s

 =  slope  

min 0.4883 m
s

 =   slope  
 

Excel, therefore, gives the following value for the slope. 
 

slope = 0.507 ± 0.019 m/s 
 

Excel has also calculated the maximum and minimum values of all possible vertical axis 
intercept. In our example here, these extreme values are 
 

bmax = 0.57 m 
bmin = 0.37 m 

 
Excel, therefore, gives the following value for the intercept. 
 

b = 0.47 ± 0.10 m. 
 
Thus, all the parameters of the linear equation (the slope and the intercept) with their 
uncertainties are known. 
 
 
Plotting the Graph with Excel 
 
With the “graphique de science” add-in, graphics can easily be plotted with all the 
aforementioned specifications. Moreover, the add-in will calculate the slope and the 
intercept values with their uncertainties. 
 
First, the data must be entered in Excel. Write all the values of both variables in two 
different columns and all the values of the uncertainty of both variables in two other 
different columns. If the value of the uncertainty is constant, you don’t need to write the 
values. The order of the columns is not important. 
 
Once this is done, click on the “graphique de science” icon. Of course, the add-in must 
be installed on the computer for the icon to appear. Then, the following dialogue box 
appears. 
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Now, you must specify where the data are located. Click in the white space immediately 
below “Plage pour l’axe des x” and then selects the data for the horizontal axis. Then click 
in the white space under the indication “Plage pour les incertitudes des x” and then select 
the values of the uncertainties of the data for the horizontal axis. Proceed in the same 
manner for the values and the uncertainties of the vertical axis (y-axis). 
 
If the uncertainty of a variable is constant, the value of uncertainty can be indicated 
instead of selecting a column of numbers. For example, if the value of the uncertainty of 
x is constant, then you can select the button “Inc. x, constant” in the box “incertitude de 
x”. The white area under “Plage pour les incertitudes des x” will become grey and inactive 
while the grey area under “Valeur Inc.” will become white and active. Then just write the 
value of the uncertainty in this white area. 
 
Once the values of all variables are given, click OK. The graph will appear with the values 
and the uncertainties of the slope and the intercept. 
 
 
What if no Line Passes through all the Rectangles of Uncertainty? 
 
Sometimes, no line passes through all the rectangles of uncertainty. In this case, there 
are three options. 
 
Maybe there is no line because one measurement is simply wrong. For example, 10.7 
can have been noted instead of 1.07 for a measurement. Thus, the line cannot touch at 
this rectangle. This value can then be removed from your data in order to make the graph 
again, provided you have a very good reason to believe that an error has occurred. It 
would be a shame to miss out on an unexpected discovery only because you thought the 
value was wrong. (This happened to a lot of great scientists by the way.) 



 

Intro-28 
 

Maybe there is no line because the rectangles of uncertainty are too small. All the points 
seem to be located more or less along a straight line, but no line can touch all the 
rectangles of uncertainties because they are too small. In this case, the problem may 
come from an underestimation of the uncertainties. It would probably be a good idea to 
reassess the uncertainties to see whether they were too small. 
 
 

Exercises 
 
With the following data, determine the value of the slope and the intercept (with their 
uncertainties) of the line. 
 

x y 

3.17 ± 0.15 11.12 ± 0.20 

6.02 ± 0.20 12.31 ± 0.40 

7.49 ± 0.25 12.47 ± 0.60 

10.22 ± 0.30 13.56 ± 0.80 

12.07 ± 0.35 14.0 ± 1.0 

15.05 ± 0.40 16.5 ± 1.2 

 
Answer        Slope = 0.403 ± 0.083 intercept = 9.83 ± 0.52 
 
 

Statistical Methods 
 
It is possible to find the best straight line that goes through the points. Excel can easily 
find the equation of this line (by the method of least squares). Be aware that the 
uncertainty of the slope and the y-intercept can also be calculated. The formulas are 
rather heavy and depend on whether you consider that the values have no uncertainties, 
have an uncertainty or a statistical uncertainty (in which the values are more likely in the 
centre of the interval). These formulas will not be given but they can be found Éric 
Laflamme’s excellent book Mesures et incertitudes en laboratoire. 
 
 

Analysis 
 
1st Part: Comparing the Experimental and Theoretical Results 
 
After obtaining the final results from calculations and graphics, you have to determine if 
these results agree with the theoretical values or if the results obtained by two different 
methods agree with each other. However, the two values to compare each has an 
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uncertainty. How is it possible to determine if they agree while taking into account the 
uncertainties? The rule is very simple. If the values and their uncertainties have shared 
values, then they agree. 
 
 
Graphical Method 
 
One of the ways to make the comparison is to use a graph to see if the values overlap. 
For example, suppose that the two values to compare are: 
  
  Experimental Speed: 18.4 m/s ± 0.6 m/s 
  Theoretical Speed:  18.9 m/s ± 0.9 m/s 
 
These values can be represented as follows. 

 
The two values have common values between 18.0 m/s and 19.0 m/s. In this case, the 
two values agree with each other. 
 
Now suppose that the two values to compare are rather 
 
  Experimental Speed: 18.4 m/s ± 0.2 m/s 
  Theoretical Speed:  18.9 m/s ± 0.2 m/s 
 
These values can be represented as follows. 

 
Here, the values disagree since the maximum value of the experimental speed (18.6 m/s) 
does not reach up to the minimum value of the theoretical speed (18.7 m/s). 
 

18 18 19 19 20 20
m/s

Experimental Value 18,4 ± 0,6 m/s

Theoretical Value 18,9 ± 0,9 m/s

18,0 18,2 18,4 18,6 18,8 19,0 19,2

m/s

Experimental Value 18,4 ± 0,2 m/s

Theoretical Value 18,9 ± 0,2 m/s
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Calculation method 
 
With the previous examples, it can be inferred that the two results agree if the uncertainty 
bars meet, and they disagree if they do not meet. A simple calculation can be done to 
check whether the uncertainty bars are long enough for the two results to agree or not. 
 
  If the difference between the values < sum of the uncertainties, then they agree 
 
  If the difference between the values > sum of the uncertainties, then they disagree 
 
Let’s do a test with the previous examples. In the first case, the difference between the 
values is 18.9 - 18.4 = 0.5 while the sum of the uncertainties is 0.6 + 0.9 = 1.5. Since the 
difference is smaller than the sum of uncertainties, those two results agree. In the second 
case, the difference between the values is still 18.9 - 18.4 = 0.5 while the sum of the 
uncertainties is now 0.2 + 0.2 = 0.4. Since the difference between the values is larger 
than the sum of uncertainties, those two results disagree. 
 
 
Results That Strongly Disagree 
 
If two results strongly disagree (e.g., an experimental gravitational acceleration of 2 m/s² 
vs a theoretical value of 9.8 m/s²) you should stop and think. No laboratory that will be 
done here is supposed to lead to results that strongly disagree. Check your calculations. 
 
If you don’t find any calculation errors, leave at least a comment showing that you 
understand that this result is ridiculous. If you move on after a ridiculous result without 
leaving any comment, your grade will be reduced. 
 
 
2nd Part (If the Values Agree Only): Accuracy of the Method Used 
 
If the results agree, then a judgment can be made on the quality of this agreement by 
considering the accuracy of the results. Usually, this is done by comparing the uncertainty 
of the measurement and the measurement itself. If the uncertainty represents less than 
5% of the measurement, the method can be considered relatively accurate. Of course, 
the desired precision depends on the context. In a research laboratory, more precision 
would be required. 
 
Let’s take two examples to illustrate. Let’s assume first that the results are 

 

17 18 19 20
m/s

Experimental Value 18,4 ± 0,6 m/s

Theoretical Value 18,9 ± 0,9 m/s
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The uncertainty on the experimental value is 3.2%, and the uncertainty on the theoretical 
value is 4.7%. As these two percentages are lower than 5%, it can then be said that the 
experiment is accurate. 
 
Now, let’s assume that the two results are as follows. 

 
The uncertainty on the experimental value is 7.1%, and the uncertainty on the theoretical 
value is 4.7%. As one of the percentages is greater than 5%, it can be said that the 
experiment is inaccurate. 
 
 
3rd Part: Critical Look at the Experiment 
 
In this section, list all those things that can affect your measurements. Usually, these 
elements are 
 

1- Factors that have been neglected (e.g., friction). 
2- Explanation of the constraints on the application of a law (the law is an 

approximation).  
3- An element of the experiment that was poorly designed. 

 
The latter often refers to a measurement that was difficult to carry out. 
 
If possible, the analysis should describe the qualitative effect of each of the elements 
(determine if this element is supposed to make the measured value larger or smaller). 
For example, if the gravitational acceleration of an object in free fall was measured, you 
will probably say that frictional forces will make your measured acceleration smaller than 
expected. 
 
 
4th Part (only if the values disagree): Causes of the Disagreement 
 
In this section, try to explain why the values disagree. If all the results agree, it is, of 
course, useless to explain the discrepancy! 
 
Of course, you can invoke to the causes mentioned in the section “critical look” but be 
careful of the way these causes change the measured value. For example, in an 
experiment on mechanics, let’s suppose that the measured value for the speed is greater 
than expected. Then, it would be weird to acknowledge friction as being responsible for 
the discrepancy because, usually, the frictional force is opposed to the motion and ought 

16 17 18 19 20
m/s

Experimental value 18,4 ± 1,3 m/s

Theoretical value 18,9 ± 0,9 m/s
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to slow down the object instead of speeding it up. 
 
The causes can vary greatly depending on the experiment, and it is, therefore, difficult to 
give guiding lines to follow to determine the cause. 
 
Do not mention the uncertainties of the measurements. For example, do not say that the 
disagreement is due to the fact that the distances were measured with a rule and the rule 
had an uncertainty of 1 mm. Since a calculation of the uncertainty on the final result was 
done, this lack of precision is already taken into account. If the results disagree, they 
disagree even if these uncertainties on the measures were taken into account. Therefore, 
find other causes of disagreement. 
 
Most of the disagreeing results come from calculation errors but you should never 
mention calculation errors as the cause of the disagreement. If you think that a calculation 
error is the cause, then check your calculations and correct the errors! If you do not find 
any error, then you cannot say that a calculation error is the cause since you have no 
reason to suspect there was an error. You will SO lose points if you say something like 
“there may have been a calculation error”. Your instructor will read this sentence as “I 
really don’t care enough about this experiment to go back and check my work, so please 
butcher my lab grade.” 
 
You can say that there was a manipulation error, but it is not enough to say that there 
was a faulty manipulation. You have to say which error was made and why it leads to an 
inaccurate result. If you do not spot any error, do not talk about manipulation errors since 
you have no reason to think that there was an error. In fact, it is best to avoid blaming 
yourselves unnecessarily since it destroys your credibility. If you are reading a scientific 
paper in which the author tells you that he is a poor experimenter and that he surely made 
an error somewhere but does not know where, will you read the next paper from this 
author? You need to act as if you were infallible, even though we know that this is not 
always true. You will SO lose points if you use the words “measurement error” or “human 
error” vaguely. Your instructor will read this sentence as “I don’t care enough about this 
experiment to actually think about what is going on in it, so please butcher my lab grade.” 
 
 
5th Part: Proposed Improvements 
 
You must always suggest ways to improve the experiment. If the results disagree, just 
propose a method to redo the experiment while trying to correct the problem by changing 
the setup or by changing the theoretical formula in order to take into account other factors. 
Even if the results agree, you should propose ways to improve the accuracy of the 
experiment by finding ways to have measurements with smaller uncertainties. Of course, 
the value of the measurement that contributes the most to the final uncertainty should be 
improved first. For example, at the beginning of this introduction, there was an example 
in which the height of a cliff was determined by measuring the time that took an object to 
reach the bottom of the cliff. In this example, the uncertainty of the height came from the 
uncertainty of the time and the uncertainty of g. As the final uncertainty came mostly from 
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the uncertainty of the time, a way to improve the measurement of time should be proposed 
in this case. It would be almost useless to increase the accuracy of the value of g. 
 
 

The Conclusion of the Lab Report 
 
The conclusion is usually very short. Just state the goals of the experiment and state 
whether or not the goal has been achieved. Depending on the agreement and the 
accuracy, the conclusion is worded differently. Here are some examples of conclusions 
of a report whose goal was to measure the speed of sound. 
 
 

1) Results agree and are accurate 
(Say theoretical speed = 330 ± 5 m/s and experimental speed = 334 ± 10 m/s) 
 
In this experiment, the formula for the speed of sound has been verified. The speed 
obtained experimentally agrees with the theoretical speed, and the results are 
accurate. The results confirm the validity of the formula. 
 
 

2) Results agree and are not accurate 
(Say theoretical speed = 330 ± 5 m/s and experimental speed = 334 ± 55 m/s) 

 
In this experiment, the formula for the speed of sound has been verified. The speed 
obtained experimentally agrees with the theoretical speed, but the value of the 
experimental speed is not very accurate. The results confirm the validity of the 
formula, but the accuracy should be improved to obtain a better verification. 

 
 

3) Results disagree 
(Say theoretical speed = 330 ± 5 m/s and experimental speed = 360 ± 15 m/s) 

 
In this experiment, the formula for the speed of sound has been verified. The speed 
obtained experimentally disagrees with the theoretical speed. Therefore, the 
results do not confirm the validity of the formula. This discrepancy is probably due 
to... 

 
 
Here’s an example of a lab report. 
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LAB 0 
 

The Pendulum 
 

Goal 
 
Check the formula giving the period of a pendulum. 
 
 

Theory 
 
The period of oscillation of a pendulum is given by 
 

1
2

2
2

 
T =  =  

g g

π
π
ℓ

ℓ  

 

Note that this period is independent of the mass of the pendulum. 
 
 

Method Used 
 
To verify this law, the period of oscillation of a pendulum will be measured for different 
lengths of rope. With the graph of the linearized equation, it will be relatively easy to see 
if the experimental results agree with the theoretical predictions. The period of 
50 oscillations will be measured as this greatly decreases the uncertainty of the period. 
 
 

Equipment 
 

- Rope 
 

- Masses (± 1%) 
 

- Stopwatch 
 

- Ruler 
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Procedure 
 

- Hang a 100 g mass at the end of a rope. 
 

- Measure the time required to make of 50 oscillations for each length of the rope 
on the following table. 

 
 

LENGTH 
 

TIME 
 

cm 
 

s 
 

±           . 
 

±          . 
 

25 
 

 
 

30 
 

 
 

35 
 

 
 

40 
 

 
 

45 
 

 
 

50 
 

 
 

55 
 

 
 

60 
 

 
 

65 
 

 
 

70 
 

 

 
 

Measurements 
 
In the lab report, give the following values: 
 

- The length and the time for 50 oscillations (present these values in a table). 
 
 

Calculations 
 

- Calculate the period (time for 1 oscillation) for each length and present the results 
in a table. 
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A linearized graph must then be plotted. As the equation for the period of a pendulum is 
not linear, a change of variable must be performed to obtain a straight line. Here is the 
change of variable. 
 

1/2

1/2

2

2
ln ln ln

1 2
ln ln ln

2

T
g

T
g

T
g

π

π

π

=

= +

= +

ℓ

ℓ

ℓ

 

 

In fact, a better version can be done to avoid problems of units.  
 

1/2

1/2

1/2 1/2

1/2

1/2 1/2

1/2

1/2

2

2

1 1

2 1

1 1 1

2 1
ln ln ln

1 1 1

1 2 1
ln ln ln

1 2 1 1

T
g

T

s s g

T m

s m sg

T m

s m sg

T m

s m sg

π

π

π

π

π

=

=

=

   
= +           

    
= +            

ℓ

ℓ

ℓ

ℓ

ℓ

 

 

If ( )ln /1u m= ℓ  and ( )ln T/1v s= , then the equation becomes 
 

1/21 2 1
ln

2 1

m
v u

sg

π 
= +   

 
 

 

This is the equation of a straight line with the following characteristics. 
 

   Slope = ½    Intercept = 
1/22 1

ln
1

m

sg

π 
  
 

 

  
- Calculate the values of u and v with ( )ln /1u m= ℓ  and ( )ln T/1v s= . Present the 

results in a table. 
 

- Plot the graph of v as a function of u. 
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- Calculate the theoretical value of the intercept 
 

1/22 1
ln

1

m

sg

π 
  
 

 

 

using g = 9.81 m/s² ± 0.01 m/s². 
 
 

Analysis 
 

- Compare the value of the theoretical slope (½) with the value of the slope on the 
graph. 
 

- Compare the value of the theoretical intercept with the value of the intercept on the 
graph. 
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Verification of the Law of the Pendulum 
Luc Tremblay, Isaac Newton, Leonhard Euler 

Collège Mérici, Quebec City 
 

November 17, 1722 
 
 
 
Abstract 
 
In this report, the formula giving the period of a pendulum will be verified. The verification 
is done by measuring the period of oscillation for pendulums of different lengths. With a 
graph, it is possible to see if the law is valid. The results obtained experimentally 
disagrees with the theoretical results. This seems to come from a faulty measurement of 
the length of the rope, from air friction acting on the pendulum, and from the fact that the 
formula for the period of the pendulum is obtained by making some assumptions that do 
not correspond to the experimental setup used. 
 
 
Measurements 
 
 

Time as a Function of the Length of the Rope 
 

LENGTH TIME FOR 50 OSCILLATIONS 

m s 

± 0.002 ± 0.3 

0.250 49.9 

0.300 54.7 

0.350 59.2 

0.400 62.8 

0.450 67.5 

0.500 70.8 

0.550 74.7 

0.600 78.2 

0.650 81.2 

0.700 84.4 
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Calculations and graphs 
 
Oscillation Period 
 
Calculation example (with data from the first line of the table) 
 

50 oscillations
1 oscillation

50

49.9

50

0.998

T
T

s

s

=

=

=

 

 
 

1 oscillation 50 oscillations

1

50

1
0.3

50

0.006

T T

s

s

∆ = ∆

= ⋅

=

 

 
 

1 oscillation 0.998 0.006T s s= ±  
 
 

Period as a Function of the Length of the Rope 
 

LENGTH PERIOD 

m s 

± 0.002 ± 0.006 

0.250 0.988 

0.300 1.094 

0.350 1.184 

0.400 1.256 

0.450 1.350 

0.500 1.416 

0.550 1.494 

0.600 1.564 

0.650 1.624 

0.700 1.688 
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u and v calculation 
 
u calculation example (with data from the first line of the table) 
 

     

ln
1

0.25
ln

1

1.3863

u
m

m

m

 
=  

 

 
=  

 

= −

ℓ

 

 

     
1

1
0.002

0.25

0.0080

u
u

m
m

∂
∆ = ∆

∂

= ∆

= ⋅

=

ℓ
ℓ

ℓ
ℓ  

 
u = -1.3863 ± 0.0080 

 
 
v calculation example (with data from the first line of the table) 
 

     

ln
1

0.988
ln

1

0.0121

T
v

s

s

s

 
=  

 

 
=  

 

= −

 

 

     
1

1
0.006

0.988

0.0061

v
v T

T

T
T

s
s

∂
∆ = ∆

∂

= ∆

= ⋅

=

 

 
v = -0.0121 ± 0.0061 

 
The following results are thus obtained for u and v. 

 



 

Intro-41 
 

v as a function of u 
 

u v 

-1.3863 ± 0.0080 -0.0121 ± 0.0061 

-1.2040 ± 0.0067 0.0898 ± 0.0055 

-1.0498 ± 0.0057 0.1689 ± 0.0051 

-0.9163 ± 0.0050 0.2279 ± 0.0048 

-0.7985 ± 0.0044 0.3001 ± 0.0044 

-0.6931 ± 0.0040 0.3478 ± 0.0042 

-0.5978 ± 0.0036 0.4015 ± 0.0040 

-0.5108 ± 0.0033 0.4472 ± 0.0038 

-0.4308 ± 0.0031 0.4849 ± 0.0037 

-0.3567 ± 0.0029 0.5235 ± 0.0036 

 
Here is the graph of v as a function of u. 
 

 
The slope of the line on the graph is 
 

Slope = 0.5189 ± 0.0097 
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and the intercept is 
 

bexp = 0.7095 ± 0.0077 
 

The theoretical value of the intercept is 
 

1/2 1/2

²

2 1 2 1
ln ln 0.69618

1 19.81 m
s

m m
b

s sg

π π  
= = =     

   
 

 
3 2

²
1/2

²

0.01
0.00051

2 2 2 9.81

- / m
s

m
s

b  gg
b =  g =  g =  =  

g g g

π

π −

∂ ∆
∆ ∆ ∆ =

∂ ⋅
 

 

btheo = 0.69618 ± 0.00051 
 

 

Analysis 
 
Comparison of Experimental and Theoretical Values 
 
The theoretical slope (0.5) disagrees with the value of the experimental slope 
(0.5189 ± 0.0097) since the difference between the values (0.0189) is larger than the sum 
of the uncertainties (0.0097). The following graph shows this. 

 
The experimental intercept (0.7095 ± 0.0077) disagrees with the theoretical intercept 
(0.69618 ± 0.00051) since the difference between the values (0.01332) is larger than the 
sum of the uncertainties (0.00821). The following graph shows this. 

 
 
Critical look at the experiment 
 
The following problems can be noted for this experiment:  

0,49 0,50 0,51 0,52 0,53 0,54

Experimental Slope 0,5189 ± 0,0097

Theoretical Slope 0,5000 ± 0,0000

0,69 0,70 0,71 0,72

Experimental Intercept 0,7095 ± 0,0077

Theoretical Intercepr 0,69618 ± 0,00051
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1) The theoretical formula used in this experiment is the equation of an idealized 
pendulum, i.e., a point mass tied at the end of a massless string. This was 
obviously not the case here. The mass was not punctual, and the rope had a mass. 
The formula used is just an approximation for the pendulum used in this 
experiment. It would have been better to use a formula for the period of a pendulum 
that exactly matches with the pendulum used in this experiment. As we don’t have 
the exact formula, it’s hard to say how this approximation influences the value of 
the slope or the intercept. 

 
2) The formula of the period is also an approximation that was obtained by assuming 

that the angular amplitude is small. In this case, the oscillation is approximately 
harmonic and the formula of the period is then obtained from this assumption. In 
the real world, the oscillations of the pendulum are not harmonic oscillations and it 
would have been better to find the formula that gives the exact oscillation period. 
The approximation is good enough when the angular amplitude is small, but it’s 
still an approximation. As we don’t have the exact formula, it’s hard to say how this 
approximation influences the value of the slope or the intercept. 

 
3) Also, air friction acts on the bob of the pendulum and its effect was not considered. 

The force of friction increases the period, which increases the values of T and v. 
This increase should normally be greater for larger values of v since the speed is 
greater for longer strings (if the angular amplitude was kept constant...). Frictional 
forces should, therefore, increase the slope and the y-intercept. 
 

4) The mass used was not a point mass, and the actual length of the rope, which is 
the distance between the pivot and the centre of mass of the bob of the pendulum 
is not quite the length measured since the distance between the attachment point 
of the string and the centre of mass of the bob was not included. The values of the 
length ( ℓ ) used here are therefore too small. This decreases the values of u and 
the effect is greater for small values of u. As smaller values of u are more shifted 
down than the larger values, the slope and the y-intercept obtained will be larger 
than expected. 

 
 
Causes of the Disagreement 
 
A slope and a y-intercept greater than expected were obtained. As stated previously, this 
difference could be explained by the poor way ℓ  was measured and by the friction acting 
on the pendulum. 
 
It could also be explained by the fact that the formulae used are approximations but it is 
unclear whether this makes the slope and the intercept greater or smaller than expected. 
 
The aforementioned effects are not really large so that the deviations from the theoretical 
values are small here. If these effects had been important, a straight line would not have 
been obtained on the graph. 
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Thus, these causes could explain the slight discrepancy observed. 
 
 
Proposed Improvements 
 
To improve this experiment, more attention to the measurement of the length of the string 
should be paid in a future experiment. It would be good to know the position of the centre 
of mass of the bob more accurately. The position of the centre of mass would be easier 
to find if a symmetrical object is used. 
 
A denser material should also be used for the bob in order to have a more compact mass 
and thus to approach the idealized situation in which mass is a point mass. Using gold 
and osmium for the bob would improve the experiment since they are the densest 
elements, but the improvement would not be that great since the density of the bob used 
is not much lower than the density of gold and osmium. Moreover, the tremendous 
increase in costs that would result does not allow us to make this kind of improvement.  
 
Finally, as the theoretical formula corresponds to a pendulum with a massless rope, the 
least massive rope should be used. 
 
 
Conclusion 
 
In this experiment, the formula for the period of a pendulum has been verified. The results 
obtained experimentally disagrees with the theoretical results. Therefore, the results do 
not confirm the validity of the formula. This seems to come from a faulty measurement of 
the length of the rope, from frictional forces acting on the pendulum, and from the fact 
that the formula for the period of the pendulum is obtained by making a few assumptions 
that do not correspond to our experimental setup.  
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Comments on the Report  
 
There is no introduction (theory, method, equipment, and procedures) to make. 
 
 
Abstract 
 
The abstract is a short paragraph giving:  

1- The goal of the laboratory 
2- A very brief description of the method 
3- The conclusion 

 
 
Measurements 
 
All the measurements made in the laboratory, and their uncertainties must be written. 
There must be no calculation made on these measurements. 
 
If you have given a result sheet at the end of the lab period, the results shown in the 
laboratory must be identical to those listed on the lab sheet. If the results are different, all 
the marks of this section will be lost (often 15%). 
 
 
Calculations and Graphs 
 
All the calculations and all the uncertainty calculations must be written. If the same 
calculation is repeated several times, to make a table for example, simply show the 
calculation of the first line of the table. Then write all the results in a table immediately 
after the sample calculation. 
 
 
Analysis 
 
The “Analysis” section is made up of 5 parts. These are: 
 

1. Comparison of experimental and theoretical values 
2. An assessment of the accuracy of the experiment (if the results agree) 
3. Critical look at the experiment 
4. Reasons why there is a disagreement (if the results disagree) 
5. Ways to improve the experiment. 

 
 
 


